论文部分内容阅读
高超声速流动具有高温真实气体效应,其中的热化学非平衡特性至今仍是研究的重点。一方面,气体分子在来流激波压缩下发生热化学变化,影响流场特性和飞行器气动性能。能够精确预测宽速域、宽空域条件的热化学模型是高温真实气体效应精确表征的基础。另一方面,根据流场关键特征评估热化学模型,是发展热化学模型的重要环节。因此,建立流动热化学状态与流动关键特征之间的联系对于研究高超声速流动和热化学模型都有帮助。 本文针对高超声速钝体绕流问题,采用数值求解Navier-Stokes方程组,开展不同热化学状态下的无黏和黏性计算,分析热化学冻结、热平衡化学冻结、热平衡化学非平衡状态对超声速流动特别是激波脱体距离的影响及其规律,然后基于数值模拟结果,发展一般条件下的激波脱体距离的预测公式。 本文的主要工作包括数值模拟与理论分析两个方面。 数值模拟方面,利用CFD软件对不同来流条件的无黏和黏性流场进行了相对系统而详细的数值计算,数值迭代采用定常方法计算,即计算物理量密度、动量、能量和组分质量分数等的L2范数,并定义为该物理量的残差,当残差小于设定数值时并认为计算收敛,默认值为0.00001,最后对数值计算结果进行了初步的网格独立性验证。本文选取了圆柱绕流和圆球绕流两个基本问题,其半径均为0.025m,来流马赫数变化范围为2~30,流动状态选取为热化学冻结、热平衡化学冻结和热平衡化学非平衡这三种流动状态。计算发现,热平衡效应使得激波层内流场的温度减小,密度增大,激波脱体距离减小,而化学非平衡效应对流场的影响和流场有无黏性相关。对于无黏流动,由于激波层的离解反应吸收大量的热,因此激波层内的温度整体大幅降低,导致激波脱体距离进一步减小;而对于黏性流动,由于来流温度保持不变,在相同来流马赫数条件下,通过改变来流密度来改变雷诺数的大小。具体来说,来流密度减小时,雷诺数减小,激波后的密度也会相应减小,进一步导致激波层内的化学反应速率减小,在流体微团经过相同的流动尺度时,离解反应吸收的热量减小,因此流场的温度下降速度变小;考虑到黏性流场边界层内会发生复合反应,而复合反应放热使得边界层内的温度增大。因此对于黏性流动,化学非平衡效应对流场的影响不仅取决于激波层的空间尺度,还与雷诺数的大小有关。如对于二维高马赫数流动,流体经过激波后,离解反应在到达驻点前就已经充分进行,在进入边界层内,复合反应使得温度升高,因此,减小雷诺数使得边界层的厚度增大,复合反应放热升高,流场温度增大,激波脱体距离增大。而对于轴对称高马赫数流动,由于流动特征尺度较小,离解反应在到达驻点时还没完全进行,因此在边界层内不会存在二维流动情形的复合反应问题,激波脱体距离主要受离解反应的吸热量的影响。 理论分析方面,通过查阅文献中的理论分析方法,严格推导得到了激波脱体距离与驻点线上径向质量通量梯度的关系式,基于严格的理论分析,进一步通过引入驻点线质量通量线性变化假设和钝头体壁面压强的修正牛顿公式推出了激波脱体距离的近似表达式,其表述形式更为简洁。根据推导结果,激波脱体距离和来流密度与驻点密度比值正相关、和来流马赫数负相关。另一方面,文献中得到的激波脱体距离工程公式也显示出相似的规律。注意到上述关联特点,根据CFD计算数据拟合得到了激波脱体距离的工程预测公式。相比文献中的公式,本文得到的公式的计算结果和CFD计算结果吻合更好,尤其在低马赫数和黏性流动情形,本文计算公式的优势较为明显。