石榴石型稀土钽酸盐磁光晶体的生长与性能研究

来源 :福州大学 | 被引量 : 0次 | 上传用户:tfjxy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
含锂石榴石体系LixLn3M2O12因具有较高的对称性,较高的稀土离子浓度等优点,有望成为性能优异的新型磁光材料。本文首次将含锂石榴石体系LixLn3M2O12应用到磁光材料领域,开展了Li5Pr3Ta2O12和Li5.95Pr3Ta1.05Zr0.95O12晶体的高纯多晶原料合成、晶体生长、磁性及磁光性能研究。采用高温固相法合成了立方相Li5Pr3Ta2O12高纯多晶原料,探索了熔盐法生长Li5Pr3Ta2O12晶体的助熔剂体系,绘制了Pr2O3-Ta2O5-Li2O赝三元体系相图。采用Rietveld法对Li5Pr3Ta2O12晶体进行了结构精修,探讨了离子在晶体结构中的占位情况,确定了实验所获得的Li5Pr3Ta2O12晶体属立方相的石榴石结构,空间群为Ia 3 d。通过SEM分析了晶体的形貌,并通过EDS扫描确定了Li5Pr3Ta2O12晶体的组分。XPS价态分析表明,熔盐法所生长的Li5Pr3Ta2O12晶体中基本不含有Pr4+离子。测试分析了Li5Pr3Ta2O12晶体的紫外可见漫反射光谱,结果表明该晶体的紫外吸收边约为300 nm,有望在近紫外光区获得磁光应用。初步探索了Zr4+的掺杂浓度对Li(5+x)Pr3Ta(2-x)ZrxO12体系一致熔融的影响规律。通过试熔实验表明,当x=1.0和x=1.2时Li(5+x)Pr3Ta(2-x)ZrxO12为一致熔融。同时,论文采用缓冷法生长出了块状晶体。通过EDS分析确定了所生长晶体化学组成为Li5.95Pr3Ta1.05Zr0.95O12,并用SEM分析了晶体的内部缺陷。用Rietveld法对晶体进行了结构精修,确定了Li5.95Pr3Ta1.05Zr0.95O12晶体为立方相,空间群为Ia3 d。通过变温磁化率的测定,研究分析了Li5.95Pr3Ta1.05Zr0.95O12晶体的低温磁性,并计算得到晶体的有效离子磁矩μeff≈3.56μB,与理论值接近。采用XPS分析了晶体内部离子价态,未发现Pr4+离子及明显氧缺陷。测试分析了Li5.95Pr3Ta1.05Zr0.95O12晶体在250~1400 nm波长范围内的透过性能,结果表明,其紫外截止波长约为300 nm,除Pr3+的~3H4→~3PJ(450~500 nm)、~3H4→~1D2(565~615 nm),以及~3H4→~1G4(1100 nm附近)跃迁吸收外,并无其它明显的特征吸收,总体透过率较高。采用消光法测试了Li5.95Pr3Ta1.05Zr0.95O12晶体的法拉第旋转,并计算得到其费尔德常数V仅略小于TGG晶体,约为Pr F3晶体的1.3倍,有望成为近紫外-可见-近红外波段新型的磁光候选晶体。
其他文献
二阶非线性光学晶体材料是一类非常重要的功能材料,在激光通讯、光学信息处理、集成电路和军事技术等方面有着广泛的用途,因为二阶非线性光学晶体通过光学参量震荡(OPO)、倍频(SHG)或者差频(DFG)等非线性频率转换技术,对已有的成熟的激光光源进行频率转换从而得到新的激光输出。其中硫属化合物由于具有较大的二阶非线性光学系数和宽红外透过波段从而得到了广泛应用。目前在中远红外波段应用的材料主要是黄铜矿型的
学位
当前,随着社会经济的高度发展,能源和环境问题不断地引起人们的广泛关注,可持续性发展迫在眉睫。利用太阳能实现光催化分解水生产清洁的可再生能源是解决这一问题的有效途径之一。光催化分解水过程包括析氧反应(OER)和析氢反应(HER)两个半反应。理想的光催化剂首先应在与水接触时保持稳定,并具有良好的可见光吸收能力。其次,理想的光催化剂应该是无毒的、生产工艺简单、且便于大规模生产。更为重要的是,光催化材料能
学位
氨的用途极其广泛,它不仅是一种生产工业化学品的重要反应前驱体,而且还可以作为重要的清洁能源氢的载体。目前,工业上主要是利用Haber-Bosch反应合成氨。该反应反应条件严苛并伴随大量二氧化碳的排放。近年来发展起来的电催化氮气还原反应(NRR)由于条件温和、环境友好而具有广阔的应用前景。在本论文中,我们采用了基于密度泛函理论(DFT)的第一性原理计算方法,对CeO2基催化剂电催化NRR进行了系统的
学位
构效关系是催化反应研究中的重要内容,不同结构、形貌的催化剂往往具有不同的催化性能,因此,设计制备具有特定形貌(如核壳结构、碗状空心球)的纳米材料来提高催化性能是非常有意义的。金属纳米粒子作为催化剂具有易团聚,易氧化等缺陷而严重影响其催化稳定性,核壳结构的设计既能有效阻止粒子间的聚集提高分散度,又能保护金属核稳定从而提升催化剂的活性及耐久度。此外,碗状空心球相比传统的空心球具有低对称性、开窗式结构、
学位
多孔金属有机配位聚合物是近三十年才发展起来的一类新型的配合物材料,关于其应用探索已经涉及到催化、吸附和分离、荧光、磁学、电化学、药物负载等诸多领域。由于该类材料具有比表面积大、骨架密度低、孔道可调控等优势,在气体的存储和分离方向展示出良好应用潜力。本文中,根据结构决定性能的原则,我们将从配合物的结构调控和晶体生长出发,来获取具有优异气体存储和分离性能的晶态多孔材料。在第一章中,简述了配位化学的发展
学位
核苷分子由于自身具有丰富的氢键受体与供体作用点,是构筑新型超分子自组装体的重要前驱物。水热碳化法是指以来源广泛、价格低廉的生物质为前驱体,在一定温度(160-220 oC)与压力下合成炭材料的绿色合成方法。但由于水热反应进程难以控制,如何以绿色又简单的方法调控生物质炭的微观结构和形貌,并将杂原子及丰富的孔结构引入到水热炭材料中仍存在挑战。利用核苷分子尤其是鸟苷在溶液中的超分子作用,有望在分子尺度上
学位
海水淡化是获得淡水资源的一种有效方法。在众多海水淡化技术中,电容去离子(CDI)是一项基于电容器原理的脱盐技术,具有节约能源、环境友好、成本低等优点,被广泛用于水处理领域中。而技术的关键在于电极材料的选择和制备。本文旨在将二维材料(石墨烯和MXene)构建成具有三维多孔结构的脱盐电极,并研究结构调控对组装电极脱盐性能的影响及脱盐机理。具体内容如下:1.氮掺杂的自支撑三维多孔石墨烯电极的构建及其CD
学位
钙钛矿太阳能电池(PVSCs)因其光电转换效率高,制备成本低,制备工艺简单,而受到广泛关注。有机-无机杂化钙钛矿太阳能电池实现了超过25%的光电转换效率,但其中的有机组分在长时间光照和高温条件下很容易降解,这会使钙钛矿层受到破坏,影响电池的稳定性。采用无机阳离子(Cs+)取代有机阳离子得到纯无机钙钛矿材料是解决上述问题的有效策略之一。其中纯无机钙钛矿材料CsPbI2Br因其合适的带隙、较高的光吸收
学位
生物质是一种重要的可再生碳基能源材料。其中,纤维素、半纤维素和木质素等生物质资源的化学结构较复杂,主要由芳香环和含氧官能团组成。通过对木质素进行热裂解处理,可以获得生物质分子。这些生物质分子可以通过加氢脱氧(HDO)处理,转化为不含氧的烃类产品(如环己烷,苯,甲苯等),这是制备新能源燃料的一种潜在途径。HDO过程的一个关键步骤是裂解芳香C-O键以实现脱氧。但是芳香C-O键的键能(约422 k J/
学位
比色法具有操作简单、响应快、裸眼识别等优势,然而传统比色法存在灵敏度低、准确性差等不足。纳米材料因低成本、易改性、高稳定性等优良特性,使其在比色检测方法的构建中受到广泛关注。本文基于3,3’,5,5’-四甲基联苯胺(Ⅱ)(TMB2+)对金纳米棒(AuNRs)的刻蚀作用,构建了生化分子的新型多色比色检测方法。并采用水热法合成尖晶石型Zn3V3O8纳米片及铜基有机金属框架(CuFMA),研究其纳米结构
学位