【摘 要】
:
近年来,锂离子电池广泛用于便携电子设备以及电动汽车等领域。随着传统能源的匮乏以及环保意识的提高,要求锂离子电池具有高容量、高安全性、寿命长且稳定性好的特点。目前,商业电池常用石墨作为锂离子电池负极材料,比容量仅有372 mAh g-1,远远不能满足人们的需求,所以负极材料的研究引起人们的广泛关注。铁基氧化物具有无毒无污染、成本低廉、资源丰富和理论容量高的优点,但同时存在首次可逆容量损失大,导电性差
论文部分内容阅读
近年来,锂离子电池广泛用于便携电子设备以及电动汽车等领域。随着传统能源的匮乏以及环保意识的提高,要求锂离子电池具有高容量、高安全性、寿命长且稳定性好的特点。目前,商业电池常用石墨作为锂离子电池负极材料,比容量仅有372 mAh g-1,远远不能满足人们的需求,所以负极材料的研究引起人们的广泛关注。铁基氧化物具有无毒无污染、成本低廉、资源丰富和理论容量高的优点,但同时存在首次可逆容量损失大,导电性差等问题。为了解决这些问题,本文以FeCl3为原料,通过调节温度来改变Fe2O3的形貌和尺寸,采用两步水热法制备不同石墨烯配比的Fe2O3/rGO复合材料,进而采用一步水热法(水热原位法、PVP辅助水热原位法、油酸辅助水热原位法)合成Fe2O3/rGO复合材料,目的是改善铁基氧化物负极材料的电化学性能。首先,通过改变水热温度来控制Fe2O3的形貌和尺寸。SEM结果发现随着水热温度从220℃下降到175℃时,形貌从类球状转变为纳米棒状,晶粒尺寸由220℃下的500nm降至175℃下的50 nm左右。其次,通过调节Fe2O3和氧化石墨烯的配比,采用两步水热法制备Fe2O3/rGO复合材料,发现Fe2O3和氧化石墨烯配比为1:0.2时,石墨烯不发生堆叠,且Fe2O3分布均匀。而且随着石墨烯含量的提高,容易引发石墨烯的堆积,Fe2O3则发生微团聚的现象。再次,采用一步水热法(水热原位法、PVP辅助水热原位法、油酸辅助水热原位法)制备Fe2O3/rGO复合材料,制备的α-Fe2O3的形貌各异,水热原位法和油酸辅助水热原位法制备的α-Fe2O3以细小的球形为主,而PVP辅助水热原位法呈现出多孔的椭球体。而石墨烯呈现典型的褶皱形貌和小块状形貌。XRD分析显示,不同石墨烯配比的Fe2O3/rGO复合材料的物相均由α-Fe2O3和石墨烯相组成;纯Fe2O3负极材料以α-Fe2O3单相形式存在,结晶度和纯度较高。电化学性能测试结果表明相比于Fe2O3负极材料,Fe2O3和氧化石墨烯配比为1:0.2时的电化学循环性能最优,在100mAg-1的电流密度下,Fe2O3/rGO首次循环放电容量为1372 mAh g-1,循环衰减速度较慢,50次循环后,循环可逆容量保持在435 mAh/g左右。以FeCl3和氧化石墨烯为原料,采用三种不同工艺制备的复合材料的电化学循环性能结果显示油酸辅助水热法制备的Fe2O3/rGO电化学性能最佳。Fe2O3/rGO负极材料在100 mA g-1的电流密度下,首次循环放电容量为1431 mAh g-1,50次充放电循环后,循环可逆容量保持在478 mAh g-1。电化学阻抗谱测试结果表明相比于Fe2O3负极材料,添加石墨烯后,内阻显著降低,而且采用三种不同工艺制备的Fe2O3/rGO复合材料的内阻顺序为:R(油酸辅助水热原位法)<R(水热原位法)<R(PVP辅助水热原位法),表明油酸辅助水热原位法制备的复合材料电化学性能优异。
其他文献
本研究针对铝合金微弧氧化膜表层孔隙率高、硬度低以及工件自身高耐磨、高防护的需求,提出将纳米SiO2颗粒复合于微弧氧化层中,在5A06铝合金表面制备Al2O3/SiO2微弧氧化层的研究思路。围绕这一思路,在硅酸盐体系电解液中加入分散剂对纳米SiO2颗粒进行分散,并采用合适的电参数,最终在5A06铝合金基体表面制得Al2O3/SiO2微弧氧化复合陶瓷层,并对膜层的耐磨性能、防护性能进行了研究。采用72
目前已应用的紫外线吸收剂主要分为有机类和无机类。有机类紫外线屏蔽剂存在光稳定性差、易分解、对皮肤刺激性大、紫外屏蔽范围窄等缺点,而无机类紫外线屏蔽剂二氧化铈具有对紫外线有较强的屏蔽性能,对可见光透光性好且对有机化学键无破坏作用等优点,目前是国内外研究的重点。本论文以氯化铈,柠檬酸,碳酸氢铵,碳酸钠,葡萄糖和聚乙二醇为原料,以柠檬酸络合物沉淀焙烧的方式制备CeO2,辅以XRD、SEM、光透过率测试等
泡沫铝的压缩力学性能以及断裂韧性在实际应用中有重要的参考价值。本文采用实验和有限元模拟相结合的方式重点研究了工业生产制备泡沫铝的压缩力学性能以及断裂韧性。对工业生产以及实验室制备泡沫铝进行压缩测试,获得了泡沫铝的弹性模量、屈服应力以及吸能性能,通过ABAQUS软件对泡沫铝进行了 3种模型的有限元分析,验证了本构方程并分析了泡沫铝在准静态压缩过程中的变形过程;基于J积分理论对泡沫铝的J1c值进行了测
风口回旋区是高炉的能量和热量之源,是高炉稳定操作不可或缺的重要反应区。风口回旋区的形成和反应情况,将直接影响高炉下部煤气的分布、上部炉料的均匀下降及整个高炉内的传热传质过程。研究和分析高炉风口回旋区的特征及其变化规律,对于创造最佳化的高炉冶炼条件、实现生产过程的准确控制以及有效发挥大型高炉生产的优势具有相当重要的意义。本文基于某钢厂实际生产数据,利用CFD模拟方法建立了风口回旋区模型,研究了在煤粉
开孔结构的泡沫金属是骨组织工程关键组成部分,它有利于组织向内生长,允许体液的传递,也显示了作为药物传递平台的潜力,是很有希望的骨组织移植材料。金属锌及其合金由于其介于铁和镁之间的降解速率已经成为最具有潜力的可降解生物医用材料之一,其多孔结构更是有希望应用于骨组织移植材料。但目前关于多孔锌及锌合金多孔材料制备工艺和性能方面的研究文献较少,因此本文从开孔锌基合金泡沫的制备工艺参数,合金泡沫的宏观结构、
铝锂合金作为一种性能优异的航空航天结构材料,传统的铸锭冶金法生产工艺已经不能满足成分稳定、高回收率、短流程的制备要求。本文探索了以Urea-LiCl为电解质体系电解制备铝锂母合金和铝热还原过氧化锂制备铝锂母合金两种制备方法。Urea-LiCl体系中,在温度低于393K条件下制备得到铝锂母合金。Li(I)能与Urea形成配位离子而降低熔盐熔点。循环伏安结果表明Li(I)在Al电极上的起始还原电位为0
脉冲电流处理对材料微观结构演变的影响一直是冶金与材料工作者们关注的焦点。目前研究者们主要集中在脉冲电流处理对材料晶粒细化的研究,而关于不同凝固阶段施加脉冲电流对金属材料夹杂物及基体组织的影响缺乏系统深入的研究。本论文在303不锈钢的不同凝固阶段施加脉冲电流,借助金相显微镜、扫描电镜、电化学工作站以及显微硬度计等仪器设备,分析材料微观结构及性能的变化,研究脉冲电流处理对303不锈钢夹杂物以及基体组织
新疆红柳沟矿区的西北部发现储量丰富的含钛多金属矿,初步探明矿区为1平方公里左右,仅表层风化层的矿石储量高达1.0亿吨以上。矿物分析发现该矿中主要的物相是SiO2,品位达46.90%,此外其中的Al2O3相的品位为11.60%,Fe2O3相的品位为10.60%,TiO2相的品位是2.0%。可见,该矿属于低品位的劣质钛矿,因此,寻找一种经济合理的处理工艺是实现该类贫杂多金属矿高效清洁利用的关键,针对该
铜铬合金具有较高的强度、硬度以及良好的导电性和导热性等优点,已成为大功率真空高压开关触头材料的首选。目前CuCr合金的工业制备方法主要包括粉末冶金法、熔渗法以及真空电弧熔炼法,以上工艺存在工艺复杂、生产成本高以及成品率低等缺陷。基于此,课题组经过30余年的研究,成功开发基于铝热还原-电磁精炼熔铸-水气复合冷制备均质铜铬合金的第四代技术原型,并成功制备出CuCr25,CuCr40合金。实际研究发现电
鉴于国内炼铁资源条件及钢铁产业发展现状,煤制气-气基竖炉-电炉短流程是我国发展非高炉炼铁的主要方向。发挥国内丰富的非焦煤资源优势,充分利用国内铁矿资源,改变钢铁生产能源结构,降低钢铁生产能耗及环境负荷,实现废钢资源高效高价值利用。本研究提出了煤制气-气基竖炉-电炉新工艺绿色评价体系。首先建立煤制气-气基竖炉-电炉短流程的工艺模型,阐明其物质走向;其次,采用?评价的方法对工艺的能量利用情况进行评价,