【摘 要】
:
大型复杂构件的加工,相比于传统大型数控机床,使用工业机器人铣削系统具有生产柔性好、成本低等优点。但工业机器人的串联结构导致其刚度远低于传统机床,加工过程中易发生颤振现象,而且机器人末端频响函数位姿依赖明显,不同工作区域的颤振稳定性极限变化很大。本文对不同姿态下机器人末端频响函数预测方法和机器人不同姿态和加工工况下的铣削稳定性预测进行研究,可以为机器人铣削加工的应用提供理论指导和技术支撑。主要内容如
【基金项目】
:
国家面上科学基金项目“叶片高速铣削的刀具-工件交互过程阻尼和非线性动力学研究”(项目号:51775211); 国家自然科学基金重点项目“大型复杂零件机器人加工理论与技术”(项目号:51535004);
论文部分内容阅读
大型复杂构件的加工,相比于传统大型数控机床,使用工业机器人铣削系统具有生产柔性好、成本低等优点。但工业机器人的串联结构导致其刚度远低于传统机床,加工过程中易发生颤振现象,而且机器人末端频响函数位姿依赖明显,不同工作区域的颤振稳定性极限变化很大。本文对不同姿态下机器人末端频响函数预测方法和机器人不同姿态和加工工况下的铣削稳定性预测进行研究,可以为机器人铣削加工的应用提供理论指导和技术支撑。主要内容如下:1)通过修正的D-H方法建立IRB6660机器人运动学模型,推导机器人的正运动学方程和雅可比矩阵。基于多刚体动力学模型,通过牛顿-欧拉方法推导机器人的动力学方程,并通过连杆惯性参数的坐标变换对动力学方程线性化,为后续研究提供基础。2)基于机器人的雅可比矩阵阐述了机器人关节空间刚度矩阵和末端刚度矩阵之间的映射关系。设计并进行了静态载荷试验,辨识得到机器人各关节的刚度值。3)针对机器人末端频响函数位姿依赖明显的问题,提出了基于线性关节模型的机器人末端频响函数预测方法。基于机器人肘部前三连杆和腕部后三连杆惯性参数值的巨大差异,将机器人六自由度模型简化为三自由度模型,通过仿真说明了简化的合理性。提出了通过有限次试验模态测试,基于三自由度模型辨识机器人动力学参数的方法,辨识出的动力学参数可以用于预测任意姿态下的末端频响函数。4)通过简化的三自由度模型和关节刚度值、机器人动力学参数值,分别基于再生颤振理论和模态耦合颤振理论分析了机器人姿态、进给方向、工艺参数对机器人铣削稳定性的影响,计算得到机器人易发生模态耦合颤振的工作区域。分析结果表明:低速铣削时机器人铣削系统极易发生再生颤振;且对于两种颤振机理来说,改变进给方向均对稳定性极限有显著影响。
其他文献
金属氧化物半导体气体传感器,具有结构简单、体积小、功耗低、价格便宜等特点,被广泛应用于食品安全,医用检测,空气质量监测等领域。其可基于微电子机械系统(MEMS)技术,通过光刻、溅射、刻蚀、微喷成膜等工艺制造微热板结构器件,实现亚毫米尺度的器件集成,大幅降低器件功耗和成本,这也将是传感器发展的大趋势。目前基于MEMS技术的传感器微制造平台,主要以硅片作为芯片基底,兼容溅射等成膜工艺,但高性能的气敏膜
随着移动互联网的飞速发展,电影的观看越来越方便。由十九世纪末发展至今,电影的种类越来越丰富,电影的数量也越来越多,不仅传统的电影行业每年会推出大量的新电影,国内的腾讯、爱奇艺等以及国外的Netflix、Apple等流媒体平台也会制作大量的自制作品,影视信息的过载现象导致用户的选择越来越困难。将推荐系统应用于存在海量视频的领域,既可以提高用户的观影体验,又能通过用户的反馈数据来促进推荐系统的发展。最
人工智能时代的到来,催生了学者们对深度学习技术研究的热潮。深度学习通过对已有知识进行推理分析和学习总结,在目标检测、自然语言处理、机器翻译以及推荐系统等领域取得了巨大的成功,解决了很多领域内的疑难问题。虽然深度学习发展至今已经取得了瞩目的成绩,但是传统的深度学习模型仍然存在一些问题。一是传统的深度学习模型是基于向量空间的,无法直接对信息-物理-社会系统(CPSSs)中的混合异构数据建模,而是将这些
现代机器人应用产业多依托离线编程技术进行机器人运动的规划,这对机器人绝对定位精度提出了更高的要求。通用提升机器人绝对定位精度的方式是对机器人进行误差标定,但是传统几何参数误差标定技术无法识别基坐标系误差,标定参数的精度一般,且补偿效果受限于关节在连杆自重下的变形。本文针对传统几何参数误差标定技术的不足,在几何参数误差模型的基础上,分别引入基坐标系误差与关节柔性变形,对机器人进行了精度补偿技术研究。
人类生存的地球空间分水陆空三大领域,这些领域尚未开发的地方往往环境复杂,变化莫测,在其上进行探测、搜寻、救援等活动需要借助载人或无人机器人。单一领域活动的机器人只适用某一固定领域,人类要想在多个领域进行活动需匹配多台机器人,这将加大成本投入,造成资源浪费。本文研制的复杂跨域环境的水陆两栖机器人可以很好的解决以上问题,实现一机多用,它能够适应在水域、水域与陆域之间的跨域松软泥泞路面、陆上野外复杂非结
监督分类是机器学习领域在处理结构化和非结构化数据的重要应用。传统的基于属性图的监督分类方法在通常有图中节点属性特征构成的图上传播节点标签,而图神经网络对节点的属性进行了平滑操作,同时在真实的图拓扑结构上传播节点标签,不仅适用于同构图还适用于异构图。作为一种重要的数据类型,图数据的分析与学习的需求日益凸显,特别地,在异构图上进行端到端学习是目前特别火热的研究课题。基于以上背景,且借鉴CNN中的卷积操
随着移动互联网和深度学习在今年来的不断发展,聊天机器人产品在市面上的种类也是越来越多。但是现如今市面上的聊天机器人大多是针对某一个特定的领域或者是在某一种特定的场景下进行使用。正是因为如此,用户并不能够在日常生活中直接感受使用到一款能够直接与其进行交流的聊天机器人。本设计旨在能够设计一款用户在日常生活中可以直接进行使用的聊天机器人。在对国内外聊天机器人的现状进行分析之后,结合用户聊天交流软件的使用
与传统机器人相比,双足机器人能够适应更恶劣的非结构化环境,一直都是机器人领域的研究热点。双足机器人的控制系统作为机器人的“大脑”,是其重要组成部分。针对双足机器人行走过程中对数据获取的实时性和稳定性要求,本文设计了一种分布式控制系统,并设计了检测步行状态的步态检测算法。本文的主要工作如下:首先,确定双足机器人控制系统的总体架构,设计了一种分布式、采用三层架构的控制系统,即:底层驱动层、数据处理层、
整体叶盘作为航空发动机的核心零部件,其加工精度和表面质量直接影响着航空发动机的气动性能、作业效率和使役寿命。目前整体叶盘的精加工大多采用人工磨抛的方式,人工磨抛存在加工效率和精度低、表面一致性差、加工要求难以得到保证、粉尘污染危害工人健康等问题。随着机器人加工技术的日益成熟,为整体叶盘的精加工提供了新的思路。但是,传统的机器人夹持单自由度末端执行器的方案存在响应速度慢的问题,导致加工效率难以保证。
在智能仓库与智慧物流领域,移动机器人的应用越来越广泛,大大提升了物品管理效率。室内环境下,定位技术是移动机器人进行运动作业的核心基础。目前,室内定位技术已有很多发展,提出了各种解决方案。其中,射频识别(Radio Frequency Identification,RFID)技术凭借其ID识别、非视距、成本低等突出优势,逐渐受到研究人员的重视,具有较大的研究潜力和应用价值。本文将移动机器人与RFID