论文部分内容阅读
与传统射频加速器相比,超强激光驱动的离子加速装置可以在微米(μm)尺度建立TV/m的加速场,使得加速距离大大缩短,有望建成“台面式加速器”。激光加速产生的离子束源具有发射度低、脉宽短和亮度高等优点,在质子照相、癌症治疗、温稠密物质产生和离子束驱动的快点火惯性约束核聚变等方面具有重要的应用价值。因此强激光驱动的离子加速在业界引起了广泛关注,人们在高能量、高品质离子束的产生和优化方面已进行了大量的理论和实验研究。近年来,激光强度的大幅度提升和制靶技术的快速发展,使得激光与等离子体相互作用研究进入了新的阶段,为新型离子加速机制(如Break-out Afterburner,BOA和辐射压加速)和新型辐射源(如高次谐波、x射线)等的研究提供了机遇的同时,也带来了新的挑战,其中亟待解决的是激光脉冲对比度问题,其根源在于激光预脉冲制约着激光与等离子体相互作用过程。因此,本论文主要围绕如何利用超薄纳米靶作为等离子体光学快门来提升激光脉冲对比度,并同时调控预等离子体空间密度分布,进而增强质子加速和优化质子束源品质来展开。论文主要包括以下四个方面:第一部分(第一章与第二章)简要介绍激光技术的发展历程、激光与等离子体相互作用的基本理论、离子加速机制以及相关的应用。然后回顾本论文研究工作中常用的实验方法和诊断手段,此外,重点介绍了激光预脉冲对离子加速的影响以及制靶和横向探针光搭建方面的工作。第二部分(第三章与第四章)提出利用超薄纳米靶与预脉冲作用来提升激光脉冲对比度,同时调制预等离子体空间密度分布的等离子体光学快门模型。首先,对等离子体快门的性能参数,包括激光能量透过率、透射激光脉冲时间波形、光谱和相位以及等离子体快门密度分布等进行了测量和优化。研究发现,等离子体快门对透射激光脉冲前沿和光谱有整形和调制作用,其效果依赖于快门靶的厚度。当快门靶较薄(≤50 nm)时,透射激光脉冲前沿陡化,脉宽变窄,大部分激光能量透过;当快门靶变厚时,透射激光脉冲光谱发生窄化,并且从长波处强度的明显抑制逐渐向短波处转移,而激光能量透过率基本上保持在40%。在此基础上,我们将等离子体快门放置于一质子源靶前,两者之间用几十微米的真空隔开,组成双层真空间隙靶构型。与单层参考靶相比,从双层靶获得的质子束发散角明显减小、通量密度更高。该结果与使用等离子体镜后的高对比度激光脉冲驱动质子束的空间强度分布和预等离子体密度分布类似。此外,我们解释了质子束发散角减小的原因,即自发辐射放大(ASE)预脉冲强度的减弱抑制了靶后表面变形,而靶前超热电子注入角的增大又使得靶后鞘层电场的空间强度分布更平滑。这一点得到了二维流体动力学模拟和粒子(PIC)模拟的佐证。随着快门靶厚度的增大,所获得的质子束最大能量随之提高,且在我们的实验条件下,束发散角保持不变。第三部分(第五章)利用等离子体快门,在大能量拍瓦皮秒激光装置上开展增强质子加速的研究。等离子体快门的引入,显著提高了质子最大截止能量和激光到质子的能量转化效率。随着快门靶厚度的增大,质子束能谱分布被调制,逐渐从平台谱结构过渡到指数分布。我们通过靶前、靶后x射线的发射情况和二维解析模型分析了最佳质子加速发生的条件,即在主激光到来之前,第一层快门靶在预脉冲作用下刚好膨胀到第二层质子源靶的前表面。质子加速效率的提升主要归因于被等离子体快门适度调控的预等离子体密度分布。这一点得到了一维流体动力学模拟的支持。此外,也证实了等离子体快门具有一定的普适性,这种级联的薄膜靶设计可以便捷推广到其它需要高对比度的激光等离子体物理研究中。第四部分(第六章)研究在初始高对比度激光条件下,通过引入可控飞秒预脉冲来调控基于等离子体快门的质子加速过程。我们在实验中观测到了两个空间分布均匀、发散角很小的质子束斑,分别沿着靶后法线方向和激光传输方向发射,并且这两团质子各自来源于第二层质子源靶和第一层快门靶。随着飞秒预脉冲强度的增大,激光传输方向的质子束通量密度逐渐强于靶后法线方向。初步分析是因为飞秒预脉冲的增强使得靶前预等离子体的分布从高密度小尺度转变到近临界密度大尺度,进而导致由以靶后法线鞘层加速机制主导过渡到以激光传输方向的加速机制(无碰撞冲击波加速或BOA)主导。来自双层真空间隙靶的反射光空间强度分布和透过等离子体快门的激光脉冲时间波形、光谱分布间接佐证了这一解释。内在的物理则需要更深入地理论分析和进一步的实验验证。