论文部分内容阅读
由豇豆单胞锈菌(Uromyces vignae)引起的小豆锈病是小豆(Vigna angularis)生产上危害最为严重的病害之一,发病严重时导致小豆提前落叶,严重影响小豆的产量和品质。目前生产中常用的小豆主栽品种均高感锈病,其防治主要依赖化学农药,而长期使用化学药剂,存在病菌抗药性、农药残留、环境污染、破坏生态等弊端。在缺乏抗性资源的背景下,实现小豆锈病绿色防控,是当前小豆生产面临的重要问题。应用外源类激素诱导提高植物自身免疫以抵抗病菌侵染被认为是一种有效且安全的潜在病害防治措施,选取适宜的外源诱导剂,明确其诱导抗性的效果及机理,可为小豆锈病的绿色防控提供理论依据。本研究小组前期转录组测序发现,多个与乙烯生物合成及信号通路相关基因在抗病品种接种锈菌后24 h显著上调表达,推测乙烯信号通路可能在小豆抗锈病中发挥重要作用。因此,本研究选取乙烯生物合成前体1-氨基环丙烷-1-羧酸(ACC)作为抗病诱导剂,研究其诱导小豆抗锈性的效果及其机理,取得以下研究结果:1.采用喷雾法以不同浓度ACC激发处理小豆真叶,于处理后2 d挑战接种锈菌夏孢子,结果表明,0.25 mg·mL-1 ACC可显著提高小豆抗锈病,与无菌水处理相比,病情指数下降了45.06%。夏孢子萌发试验表明,不同浓度ACC对锈菌夏孢子萌发均无显著抑制作用,表明ACC处理对小豆抗锈性的提高并非由于对病菌的直接抑制产生的抗侵入机制,可能由于小豆免疫力提高而产生了抗扩展机制。2.ACC激发处理除诱导小豆抗锈性提高外,还可引起小豆幼苗出现顶端弯钩、叶片卷曲及株高降低的乙烯“三重反应”。利用qRT-PCR技术对ACC处理后小豆乙烯生物合成(MPK3、MPK6)及信号通路相关基因(EIN2、EIN3、ERF2、ERF5)的表达分析表明,与无菌水处理相比,ACC处理后MPK3和MPK6显著上调表达,乙烯信号通路核心正调节因子EIN2、EIN3于ACC处理后48 h显著上调,并激活其下游转录因子ERF2、ERF5等基因显著上调,表明ACC处理促进了小豆内源乙烯含量的积累,并激活乙烯信号通路致使小豆植株呈现乙烯三重反应。3.为深入探索乙烯信号通路在ACC诱导小豆抗锈性中的作用,本研究通过分析ACC处理并接种后EIN2、EIN3、ERF2、ERF5基因的表达情况,结果表明,与水处理对照相比,乙烯信号通路核心正调节因子EIN2、EIN3在病菌侵染早期(0-24 h)显著上调,侵染后期(48 h后)表达量开始显著降低。应用乙烯信号通路抑制剂1-甲基环丙烯(1-MCP)与ACC共同处理并接种后发现,1-MCP单独处理并接种后,植株生长及抗性表型与水处理对照差异不显著,1-MCP与ACC共同处理并接种后,小豆植株的三重反应消失,但植株仍表现明显的抗锈性。上述结果表明,ACC诱导小豆抗锈性提高并不完全依赖乙烯信号通路的激活。4.为初步明确ACC诱导小豆抗锈病机理,采用qRT-PCR技术分析了PR2、PR4及NPR1等防卫相关基因于ACC激发处理并挑战接种锈菌后不同时间的表达情况,与水处理并挑战接种锈菌的对照相比,PR2、PR4及NPR1等基因均于接种后24 h表达量达到峰值,随后有所下降,但表达水平仍显著高于对照。进一步对几丁质酶及β-1,3-葡聚糖酶活性的测定结果表明,几丁质酶活性在ACC诱导并接种后48 h显著升高,β-1,3-葡聚糖酶活性接种后不同时间与对照无显著差异,表明ACC处理激活了PR2、PR4、NPR1等防卫基因,并显著提升了几丁质酶活性,小豆对锈菌侵染产生了抗扩展作用,进而提高了小豆的抗锈性。