论文部分内容阅读
蓝相液晶由于其具有快速的外场响应能力、独特的自组装特性、晶格参数易受外界条件影响发生变化及奇妙的电光性能,在快速响应电光器件和可调光子晶体等领域具有光明的应用前景。但目前仍存在蓝相温度区间过于狭窄以及电光性能难于满足实际应用等问题。本研究中,我们首次利用多酸基元构筑的有机无机纳米复合材料来稳定蓝相和调控蓝相液晶的光学性能。首先,我们制备了两种含有不同数量偶氮基团的有机无机杂化多酸单体,并将它们以不同浓度引入到主体液晶中来研究其对蓝相液晶温域的影响。研究表明:含有双偶氮弯曲型的多酸杂化分子与含有四偶氮的树枝状的多酸杂化分子对蓝相液晶的稳定效果有所不同,其中弯曲型多酸分子有利于稳定BP I, BP I的最宽温域可达20.5℃;而树枝状多酸分子对稳定BP Ⅱ有所帮助,温域最宽可达8.1℃。进一步我们选用含有四偶氮的多酸分子掺杂的蓝相液晶作为研究对象,利用紫外/可见光来诱导偶氮基元的异构化反应,研究BP Ⅱ在此作用下的光学性能的改变;结果表明BP Ⅱ的布拉格反射波段产生约80nm的红移。并且,从分子结构特征以及粘弹性这两方面对稳定和光调控BP的机理进行了解释。其次,我们制备了含有丙烯酸酯端基的可聚合多酸杂化分子,首先研究了其非聚合的前躯体对蓝相液晶的稳定效果,研究表明在添加量为1.0wt%时,蓝相温域可达17.4℃。进一步将上述可聚合多酸分子,交联剂C6M以及光引发剂651与主体液晶混配,在紫外光照作用下使其光聚合形成聚合物网络稳定的蓝相液晶。聚合物网络的形成可以显著稳定和拓宽蓝相温域,这是由于多酸分子构筑的聚合物网络占据了蓝相液晶体系内向错线的位置,结果导致了体系自由能的降低。另外,我们选取最佳配比的多酸网络稳定的蓝相液晶体系作为研究对象,研究了其基于克尔效应的电光响应性能。发现与非掺杂体系比较,该聚合物网络稳定蓝相液晶样品的相应转化电压有所降低,并且从多酸纳米粒子低表面自由能的角度对机理进行了解释。综上所述,本研究中采用的多酸基元构筑的有机无机杂化体对稳定和电光调控蓝相起到了很好的作用,从分子结构设计的角度为蓝相液晶的性能优化开辟了一条新的途径。