论文部分内容阅读
本文主要利用Grobner—Shirshov基理论证明Novikov群的字问题是可解的。
第一章是预备知识,主要介绍Grobner—Shirshov基理论的基本概念和定理,特别是有单位元结合代数的合成钻石引理(Composition—Diamond Lemma)。
第二章给出Novikov群Ap1p2的一个Grobner—Shirshov基,并证明该基是算法递归的,作为一个应用,我们得到Novikov群的字问题是可解的.
第三章给出了E—酉正则半群的一个算子半群Γ+/ρ(Σ)的一个Grobner—Shirshov基,并得到它的一组正规形。