论文部分内容阅读
本文选用聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO,F127)三嵌段共聚物作为表面活性剂,可聚合的甲基丙烯酸甲酯(MMA)为油相,通过反相微乳液及其聚合技术制备了包含纳米AgCl粒子的F127-PMMA(聚甲基丙烯酸甲酯)有机-无机杂化膜,用于苯/环己烷体系的渗透汽化分离,主要研究内容包括以下几个方面:
1、F127/MMA/(H2O+NaCl)和F127/MMA/(H2O+AgNO3)微乳液体系最大增溶水量ωmax)及其稳定性的研究
通过电导率法考察了微乳液体系ωmax及其稳定性,结果发现:(1)以F127作为乳化剂形成的F127/MMA/(H2O+NaCl)和F127/MMA/(H2O+AgNO3)微乳液只能是反相微乳液,并且其可控范围较窄;(2)F127浓度对反相微乳液体系的ωmax影响不大;(3)水相中NaCl浓度对F127/MMA/(H2O+NaCl)反微乳液体系的ωmax影响不大,而水相中AgNO3浓度对F127/MMA/(H2O+AgNO3)反微乳液体系的ωmax有较大影响。
2、反相微乳液体系中AgCl纳米粒子的结构调控及表征
纳米AgCl粒子的形成和粒径的变化与反相微乳液体系的增溶水量ω、盐的浓度(Csakt)以及F127的浓度(CF127)有关。实验采用紫外-可见吸收(UV-vis)光谱、透射电镜(TEM)分析了纳米AgCl粒子在反相微乳液体系中的形成及粒径变化规律。(1)与小分子表面活性剂比较,以分子量较大的F127作表面活性剂时,纳米AgCl粒子的形成、生长和凝聚需要较长的时间,制得的纳米AgCl粒子的粒径均小于10nm,粒径分布范围较窄。(2)随着微乳液体系中ω的增大,AgCl纳米粒子的平均粒径变大,粒子数目明显减少,但是当ω达到18以后,AgCl粒子的粒径略有下降,紫外可见光谱和TEM结果一致。(3)增加微乳液体系中的Csalt,有利于获得更多更小的纳米AgCl粒子。但是随着微乳液体系中的Csalt的进一步增加,在形成AgCl粒子的同时,也形成纳米Ag粒子。(4)随着微乳液体系中乳化剂的浓度增大,纳米AgCl粒子粒径和数目均增大。
3、AgCl/PMMA-F127杂化膜的研制及其渗透汽化性能的研究
利用微乳液聚合技术制备了AgCl/PMMA-F127均质膜和复合膜,采用扫描电镜(SEM)分析纳米AgCl粒子在杂化膜中的分布情况,分析结果显示:AgCl纳米粒子呈球状结构且均匀分散在杂化膜中,未出现明显的团聚现象,膜的致密性较好。复合膜对苯/环己烷体系的渗透汽化性能测试结果表明:当ω小于14时,随着微乳液体系中ω的增加,杂化膜的渗透通量和分离因子同时增大,当ω大于14时,杂化膜的分离因子开始减小;随着微乳液体系中Csalt和CF127的增加,杂化膜的分离因子表现出先增大后减小的趋势。
论文研究表明,通过改变微乳液体系中ω、Csalt、CF127等因素可以调控生成的纳米AgCl粒子粒径和数量,从而改变AgCl/PMMA-F127杂化膜的结构形貌及渗透汽化分离性能。