论文部分内容阅读
镍基高温合金具有良好的抗疲劳、抗氧化和抗热腐蚀等综合性能,是高温、高压等复杂环境下部件制造关键用材。合金在高温下服役过程中,原子的扩散引起γ’强化相的成分、微观组织变化,导致合金的性能退化。因此,研究合金中原子的扩散对设计、改善和提高合金的性能具有重要意义。本文利用相场方法,分别建立体扩散和界面扩散控制的相场模型。采用周期性边界条件和半隐式傅里叶谱算法,在傅里叶空间中对Ginzburg-Landau和Cahn-Hilliard控制方程求解,模拟Ni-Al合金在不同扩散控制下的丫→γ’有序相沉淀过程,探明γ’的尺寸、体积分数、粗化速率和成分的变化规律。在体扩散控制下,形核阶段,随着扩散的加快,γ’相难以形核,初始核心数量较少。随着时效过程的进行,γ’相通过吸收γ中溶质原子而逐渐长大,基体中溶质原子的过饱和度逐渐减小。粗化阶段,扩散系数越大,γ’相平均半径越大,γ’相的粗化速率加快,γ相中过饱和度减小越快,γ/γ’相间界面宽度越窄。在界面扩散控制下,随着温度的升高、Al浓度的降低以及弹性应变的作用,γ’相达到平衡时的体积分数、平均粒径、粗化速率均减小。此外,与体扩散相比,界面扩散下的γ’相达到平衡时的体积分数、平均粒径、粗化速率都增加。在体扩散控制下,γ’相界面迁移需要溶质原子在基体中的长程扩散,γ’相界面迁移速度较慢;而在界面扩散控制下,γ’相界面迁移仅取决于界面最前沿原子跃过界面γ’相界面迁移速度相对较快。