广义凸性下的集值优化最优性条件

来源 :南昌大学 | 被引量 : 0次 | 上传用户:blueblacktzb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在Hausdorff局部凸拓扑线性空间中考虑约束集值优化问题的严有效性。给出了内部锥次类凸的一个性质,在内部锥次类凸和条件(CQ)成立的假设下,利用择一性定理分别得到了向量集值优化问题严有效解的 Kuhn-Tucker 型, Lagrange 型和鞍点最优性充分必要条件。在严有效的条件下给出了集值映射次微分存在性定理,在内部锥次类凸的条件下给出了严有效解在次微分下的 Kuhn-Tucker 型,Lagrange 型最优性条件。
其他文献
近年来,我国城市化进程日益加快,城市人口聚集加大了水资源的需求,与此同时,水污染以及水资源浪费现象也日益加剧。因此,必须加强城市水资源的合理利用,构建城市水资源高效利用的机
期刊
本文的第二章利用比较原理结合向量Lyaponuv函数,讨论了多滞后时变系统的不稳定性。在§2.1中,首先研究了一类多滞后线性时变连续系统的不稳定性;通过建立多滞后线性定常辅助