论文部分内容阅读
本文研究了非线性数学物理中的几类非线性微分方程的可积耦合、Hamilton结构、Darboux变换和精确解。主要开展了四个方面的研究工作:离散晶格系统的Hamilton结构和守恒律;基于Bell多项式的非线性偏微分方程的可积性质;可积耦合及其约化;(2+1)-维可积系统的Darboux变换和精确解。第一章,主要介绍了与本文相关的R-矩阵理论、非线性偏微分方程的精确求解和可积系统理论的研究背景及发展现状,并阐明了本文的主要工作。第二章,基于位移算子和R-矩阵理论,研究了离散晶格系统的Hamilton结构和守恒律问题。利用Lie代数中的三个位移算子,生成几个具有5-晶格向量场的离散可积系统,通过诱导李泊松括号的泊松张量,得到该系统的Hamilton结构。这些可积系统可以约化为带约束的Toda格系统。其次,利用离散可积系统的Lax表示,发现了递归算子,它可以用来推导相应的离散可积系统的Darboux变换,从而得到精确解。最后,利用本文给出的位移算子的约化,推导出一个新的离散晶格系统。此外,我们将约化的位移算子推广到一个具有三个晶格向量场的扩展系统,得到了它们的Lax对、无穷守恒律。同时我们特别给出了生成Hamilton结构的一种简单而有效的方法,这是一种采用Casimir函数梯度的展开式,而非Casimir函数本身方法生成Hamilton结构的方法。第三章,将Bell多项式推广应用到一个变系数的演化方程和一个广义KdV方程。第一部分,首先将一类具有松弛效应作用的非均匀介质KdV方程推广到更一般形式的具有变系数的可积方程,并用Bell多项式进一步研究该方程的双线性表示、B?ckluand变换、Lax对和无穷守恒律。第二部分,利用Bell多项式讨论了广义KdV方程的可积性质,包括双线性形式、Lax对、B?ckluand变换和无穷守恒律等。第四章,从谱问题出发,基于屠格式、零曲率方程和Lie代数理论研究可积耦合及其约化问题。第一部分,从Geng-Cao提出的谱问题出发,利用屠格式和零曲率方程寻求一个可积方程族(称为GC族),并且寻求其Hamilton结构。然后构造一个6维Lie代数,得到了GC族的一个非线性可积模型,约化该扩展可积模型为Burgers方程并进一步约化为热方程,再由变分恒等式求出该扩展可积模型的Hamilton结构。另外我们构造了另一个6维Lie代数,利用屠格式得到了第二个扩展可积模型,再利用迹恒等式得到了其Hamilton结构。并通过比较指出,所得到的两类GC方程族的扩展可积模型是不一样的。第二部分,首先引入了一个Lie代数,然后定义了其相应的两个Loop代数,利用Loop代数构造了两个等谱问题,利用其相容性条件导出了两个可积动力系统。通过约化这样的系统,得到了某些有趣的非线性方程,如Burgers方程、组合KdV-mKdV方程和Kuramoto-Sivashinsky方程以及KdV方程的一种推广形式。第三部分,基于屠和孟在矩阵Lie代数的框架下建立的AKNS族、D-AKNS族、Levi族和TD族的统一可积模型的思想,引入了两个分块矩阵Lie代数,提出一个等谱问题,其相容性条件产生了一类可约化为Levi族和AKNS族等的统一可积族。第五章,主要研究(2+1)-维可积族的约化、Darboux变换和精确解。我们从一个算子换位子引入一个等谱问题,由此利用屠格式[77]约化一个(2+1)-维Shallow water wave(SWW)族和(2+1)-维Kaup–Newell(KN)族,约化出了一个(2+1)-维SWW方程和一个(2+1)-维KN方程。而且,我们研究了(2+1)-维SWW方程的两个Darboux变换。另外,与我们所熟知的KP方程、mKP方程、DS方程等所有含有变量x的反演算子的方程不同,我们这里所得到的(2+1)-维SWW方程和(2+1)-维KN方程都是变量x和y的微分。作为比较,我们利用自对偶Yang–Mills方程的一个约化的谱问题和SWW族的一个空间谱问题,推导出了一个(2+1)-维的热方程和一个含有变量x和y的反演算子的(2+1)-维非线性演化SWW族,而且研究了它们的Darboux变换。该论文有参考文献177篇。