论文部分内容阅读
多孔阳极氧化铝膜是理想的合成纳米线结构的模板材料。然而通常的氧化铝模板制备较困难,合成纳米线的工艺复杂。采用交流电沉积的方法,在未去处铝基体的情况下,使金属沉积到氧化膜孔中合成纳米线的工艺较简单,可省去减薄氧化膜阻挡层并与基体分离、喷镀导电金属层等工序。然而施加交流电时,金属离子在氧化膜孔中的沉积过程变得复杂。所以,交流电沉积条件下,探讨金属离子在多孔氧化膜的沉积历程具有重要的意义。本文采用电化学技术,在硫酸、草酸和磷酸溶液中通过对铝及其合金实施阳极氧化处理,制备了多孔阳极氧化铝膜。在上述三种溶液里恒压氧化过程中,初始阶段电流密度迅速下降,随后转为升高,最后趋于平稳。20℃时,稳定时的电流密度值与氧化电压均呈指数变化关系。硫酸溶液中电流密度i与电压V的关系为:i=1.056e0.1676V;草酸为:i=2.763e0.037V;磷酸为:i=0.446e0.024V。高纯铝经电化学抛光后,通过阳极氧化得到有序的多孔结构的氧化膜。硫酸氧化膜的平均孔径约为20nm,草酸氧化膜的约为40nm,而磷酸氧化膜的孔径为50nm到120nm。经XRD分析,铝合金在硫酸溶液中所得到的氧化膜为非晶的α-Al2O3。U-I特性曲线测试发现,高纯铝阳极氧化膜具有单向导通的性质。氧化膜的阴极极化过程可分为三个阶段:初始时,电流密度变化较小而电位迅速负移,为克服氧化膜阻挡层电阻阶段;电流密度迅速增大而电位变化较小的析氢阶段;之后电流密度变化较小而电位迅速负移的受氢离子扩散控制阶段。氧化膜阻抗的大小由氧化膜阻挡层决定,阻挡层愈厚,氧化膜阻抗愈大。氧化电压与阻挡层的厚度成正比,在硫酸、草酸和磷酸溶液中的阻挡层成长率约为1nm/V。LY12铝合金磷酸氧化膜和复合氧化膜在含25g/L的ZnSO4·7H2O、25g/LH3BO3、1g/L的(NH4)2SO4与N(CH2COOH)3的溶液中,施加15V交流电压,室温下制备了含锌粒子的复合膜。其中,LY12铝合金复合氧化膜在溶液中交流电沉积300s时,沉积在氧化膜孔中的锌粒子为单质锌,主要分布在氧化膜孔底约2μm内,沉积量为31.404μg/cm2。沉积过程中,沉积量C与沉积时间s呈对数关系:C=7.6537ln(s)-12.388。首次采用交流电沉积的方法在LY12铝合金硫酸氧化膜上制备了Ce复合膜。工艺条件为:在1 g/L CeCl3·7H2O和10 mL/L H2O2的水溶液,施加10 V电压,室温下沉积5 min。实验发现,只有氧化膜的厚度大于6.8μm时,才能形成均匀的Ce复合膜,Ce复合膜表面稀土Ce的平均含量为1.70(wt)%,且分布均匀,Ce主要以非晶态的Ce3+和Ce4+氢氧化物分布在氧化膜多孔层的表层,分布深度约为1.51μm。采用交流电沉积的方法,1235铝合金硫酸氧化膜在硫酸铜溶液中电沉积得到金属Cu,草酸氧化膜在硝酸银溶液中电沉积得到金属Ag。Cu和Ag主要沉积于氧化膜孔底,氧化膜其他地方分布相对较少。交流电沉积过程中发现,峰值电流发生剧烈变化区域,发生金属离子和氢离子的还原反应,峰值电流稳定时则发生金属离子的还原反应,而氢离子的还原反应受到抑制。而且,电沉积过程中,阴极的峰值电流比阳极的峰值电流大。