论文部分内容阅读
硅基纳米光波导是在亚波长尺度实现光信息传输、耦合、与物质相互作用的低损耗导波结构,可构成光源、功能敏感单元,是光电集成传感和光信息芯片的基础,且绝缘体上硅(SOI)一系列重大的研究突破使得硅基材料被认为是构建集成光子器件的理想平台。然而这种全光互连的器件如果要应用到大众消费市场必须基于低成本的技术。所以具有高集成度的硅基光子技术微纳米光学器件掀起了全球的学术界和工业界研究热潮。本文围绕硅光子器件中的关键组成—硅基波导谐振器的相关特性及其应用进行分析研究。该谐振器主要由纳米波导光栅、传输光波导、高品质因子(Q)环形微腔在同一平面制备集成。对于性能优良高集成的硅波导谐振器,其主要影响因素有:高效的光导入(耦合),传输波导的低损耗以及高Q谐振腔等多方面的挑战。本文基于纳米光波导单模(TE模)传输条件下,如何抑制波导传输损耗,提高纳米光栅垂直耦合效率,保持谐振腔高Q值进行理论分析,其次对波导谐振器的温度特性,光学线性特性进行测试分析,对光学非线性特性及全光学开关等相关应用进行了实验研究。相关研究内容可归结为以下几个方面:1、利用FDTD和RSOFT软件对纳米光波导结构单元中的纳米光栅、条形波导、光波导微腔进行了光学传输特性分析。首先对传输光波导的单模传输特性进行数值分析,对光波导传输损耗进行分析优化;其次,基于光学单模传输,给出光栅耦合效率的计算方法,对光栅耦合效率影响的主要参数光栅深度、周期与占空比等进行优化分析,最终确定周期为590nm、占空比为50%的纳米光栅结构,传输纳米光波导宽度为450nm,厚度为220nm。在理论分析微环谐振腔主要性能参数的基础上,重点分析了纳米光波导微腔与传输波导耦合系数、传输损耗的影响机制,并对相关参数进行数值仿真分析。最后利用L-Edit软件对微腔谐振器集成单元进行了优化设计。2、通过微纳跨尺度工艺模式,结合电子束曝光与深硅刻蚀技术,通过采用Bosch工艺循环干法刻蚀方法,提高传输波导侧壁陡直度,降低了传输波导损耗,克服了微纳一体化制备中的邻近效应、迟滞效应、微掩膜效应等工艺技术难点,制备了硅基集成纳米光栅、传输光波导、谐振单元一系列不同结构的微腔谐振器结构。3、基于高Q单环微腔,首先对微腔的线性特性进行了测试分析,得到了传输损耗为0.532dB/cm和品质因子为105高Q值微腔,同时对微腔的温度特性进行了测试,谐振波长的线性度为54.1pm/℃。其次研究了硅基微环谐振腔的光信号调控技术,利用单微腔结构,通过单光束功率调控注入方式分析了微腔的光学热非线性特性,得到谐振峰红移阈值0.34nm。在理论分析光学开关的基础上,研究了基于热非线性效应的双光束调控注入模式的微环谐振腔全光开关的方案,通过调控优化对应波长的光功率实现了消光比为15dB和开关时间为微秒量级的全光学开关;其次分析了单微环谐振腔的光延时特性,通过调控两个相邻谐振波长的光功率,发现探测光功率的大小与光延时量成正比关系,通过相互调控最终获得了15.4ps和8.5ps的最大延时量。