论文部分内容阅读
传统电信网络由一系列的专有物理设备组成,网络服务所需的网络功能都是专有设备。这样的网络使提供网络服务的周期长、服务敏捷性低,并且严重依赖于专用硬件。这些缺点使在传统网络中提供敏捷的、多样的服务变得极其困难。网络功能虚拟化(Network Function Virtualization,NFV)被提出来以解决这些问题。NFV使用虚拟化技术,将基于硬件的网络功能实现为基于软件的虚拟网络功能(Virtualized Network Function,VNF);然后在通用服务器上运行这些VNF,而不用购买和安装新的硬件。这样,网络服务便可以分解为,多个可以动态部署在通用服务器上的VNF。因此,NFV提供了一个设计、部署和管理网络服务的新范式。NFV在提高网络灵活性的同时,也降低了资本支出(Capital Expense,CAPEX)和运营成本(Operating Expense,OPEX)。虽然NFV具有许多优势,但是,为了应用NFV,仍然还有许多挑战亟需解决。本文主要研究了,动态场景中NFV中的资源分配问题,包括VNF的放置问题,以及云环境中的VNF供给问题。本文的研究内容和主要贡献点如下:1.基于在线原始对偶算法的性能保证的VNF放置算法研究。在考虑NFV网络的动态特征情况下,本文提出了一个可证明性能的算法DAFT。DAFT基于在线原始对偶算法框架设计,并将子问题规约到一个能够使用迪杰斯特拉(Dijkstra)算法来求解的问题,从而使算法在满足理论可证明性能的同时,保证较低的计算复杂度。理论分析表明,DAFT相对离线最优解的竞争比(Competitive ratio)为(1-1/e),其中e≈2.7183。本文还提出了一个基于DAFT改进的算法来解决DAFT可能违背容量约束这一问题,即FDAFT。仿真结果表明,DAFT和FDAFT的竞争比显著优于同类对比算法。2.基于李亚普诺夫优化的缓存感知的VNF放置算法研究。本文在考虑缓存(队列)稳定性的情况下,研究了动态网络中的VNF放置问题。本文提出了在线算法MACRO来求解这个问题。另外,为了限制最坏情况下请求的延迟,本文提出了一个改进的算法WEB-MACRO。两个算法与平均最优解的差距都为O(1/V),其中V是一个可调参数,用于控制目标函数值和队列长度的折中。此外,MACRO维护的队列长度由O(V)约束;WEB-MACRO维护的队列长度存在有限上界,从而限制了最坏情况下服务请求遇到的延迟。仿真结果表明,MACRO和WEB-MACRO的队列稳定,总成本低于同类对比算法。3.基于图神经网络和DRL的VNF-FG放置算法研究。复杂的网络服务可以被抽象为虚拟网络功能转发图(Virtual Network Function Forwarding Graph,VNF-FG),它也是一个有向无圈图(Directed Acyclic Graph,DAG)。本文研究了动态场景下VNF-FG的放置问题。为了充分利用复杂网络服务特殊的DAG结构,以及处理动态网络的复杂性,本文将图神经网络(Graph Neural Network,GNN)与深度强化学习(Deep Reinforcement Learning,DRL)结合起来,提出了一个高效的VNF-FG放置算法,即Kolin。仿真结果表明,与最新的方法相比,Kolin在系统成本、接入率和计算复杂度方面都有显著提升。4.基于组合优化算法的限制VNF迁移的VNF放置算法研究。本文研究了如何在限制VNF迁移数目的同时,减少放置VNF所需的服务器数目的问题。本文基于一个求解在线装箱问题的组合优化算法,设计了VNF放置算法SIVA。理论分析表明,SIVA每一步最多迁移λ个VNF,当k→∞的时候,该算法的渐近竞争比(Asymptotic Competitive Ratio,ACR)为3/2,其中λ=k·|N|,k是可调参数,|N|是网络支持的VNF类型的数目。仿真结果表明,SIVA利用较少的VNF迁移减少了使用的服务器,并且优于对比算法。5.基于模型预测控制的随机云环境中的VNF供给算法研究。由于NFV的优势,网络功能虚拟化提供商(Network Function Virtualization Provider,NFVP)尝试购买云资源来部署VNF,从而提供NFV服务。然而,现有的资源购买方案忽略了云环境的动态特征,从而可能导致成本过高。本文同时考虑了云资源价格,以及服务请求流量大小的动态变化,研究了NFVP应该如何购买云资源,从而降低其成本的问题。本文基于模型预测控制(Model Predictive Control,MPC)提出了算法VINOS,其中,VINOS使用长短时记忆(Long Short Term Memory,LSTM)网络来预测未来的云资源价格和服务请求流量大小。仿真结果表明,VINOS的总成本接近离线最优,并优于对比算法。