毫米波大规模MIMO系统混合预编码算法研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:wain155
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术在提高系统性能方面具有显著的成效,毫米波为现代通信技术提供大量未授权的频谱资源,并且,由于毫米波较短的波长,可以使天线阵列微型化,极大的降低了成本损耗。将大规模MIMO技术与毫米波结合,不仅可以有效的提升系统的传输速率,而且还可以极大的增加系统的传输带宽。在毫米波大规模MIMO系统中,混合预编码技术可以有效的提升系统的频谱效率,目前混合预编码结构主要有两种,即全连接结构和部分连接结构,本文分别在这两种结构下设计频谱效率更优的混合预编码算法。具体的研究内容如下所述:(1)在单用户毫米波大规模MIMO全连接结构系统中设计一种基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)改进的频谱有效的混合预编码算法。该算法解耦合模拟预编码矩阵和数字预编码矩阵,首先对于模拟预编码矩阵的设计,选取阵列响应矢量作为其候选矩阵,从而减少了实现的复杂度和数据流之间的干扰;然后利用正则化迫零(Regularized Zero Forcing,RZF)的方法处理信道矩阵和模拟预编码矩阵构造成的等效矩阵,以此来求解数字预编码矩阵,从而进一步减少了数据流之间的干扰和噪声的影响;最后通过观察仿真结果可知,所提算法在完美和不完美信道状态信息(Channel State Information,CSI)下均可以达到较好的频谱效率,从而验证了所提算法在实际应用中的价值。(2)在部分连接结构系统中,设计一种基于几何平均分解(Geometric Mean Decomposition,GMD)的频谱有效的混合预编码算法。该算法联合求解数字预编码矩阵和模拟预编码矩阵,且减少对混合预编码矩阵的限制,首先将频谱效率优化问题分解成若干个子问题,构造中间矩阵并对其进行GMD处理,避免了复杂的计算过程;然后通过逐级迭代更新实现频谱效率的最大化;最后由仿真结果可知,所提出的混合预编码算法在完美和不完美CSI下均可以达到很好的频谱效率。
其他文献
近些年,携带螺旋相位波前的涡旋电磁波引起了各国科研人员的极大兴趣。由于涡旋电磁波具有螺旋相位的波前分布特点,使得它在通信传输、量子编码、粒子操纵、光学成像以及光刻技术等领域具有广阔应用前景,尤其在通信领域应用潜力巨大。由于轨道角动量是描述电磁波物理属性的新维度,因此如果对电磁波的轨道角动量进行单独编码或者作为载波携带信息,再结合传统的波分复用、正交幅度技术以及极化分复用等复用技术,可以极大提高通信
全球卫星导航系统(Global Navigation Satellite System,GNSS)作为一个国家现代智能信息化发展的重要基础设施。在近40年来,卫星导航在国家国防安全、社会经济发展以及人民日常生产生活等领域都发挥着越来越重要的作用。GNSS导航信号从卫星传到用户两万公里左右的传输过程中存在着复杂的空间电磁环境,且由于系统脆弱性,系统突发事故等,为了保证系统信号的可靠安全,需要对卫星信
通常,消费者在线购物时会根据商品的专有名词以及一些属性信息对其进行检索,用户在浏览商品时也会关注于商品属性方面的信息特征,因此分析出商品信息中关于特定属性方面的观点信息对提升商品的服务与质量是有必要的。细粒度的用户观点对商品的认知具有引导作用,可以影响消费者的购物决策,同时也为企业了解产品的属性特征提供了必要的信息反馈,具有重要的参考价值。本文的主要工作围绕着商品的观点分析展开,意旨分析出更详细、
目前,对海量数据的研究主要集中在对数据的存储、检索、挖掘和分析等方面,并且基本上都是基于某一特定的应用场景以及特定的数据源而进行的研究。互联网飞速发展和广泛应用的今天,短时间内就会有大量的、各种各样的数据产生,这些数据有表格、文本、音频、视频等,数据的存储格式也各不相同、各有特点。现实中,也会因为某种需要,要求对这些多源异构数据进行集中统一存储管理,而同源同构数据下的技术方案和算法并不能直接用于对
近年来,随着我国高等教育的迅猛发展,大学毕业生也日益增多。尽管就业岗位的数量在不断增加,但我国劳动力市场的供需失配的结构性问题依然非常严重。如今,随着互联网的普及,网络招聘成为企业招聘人才的主流方式。招聘信息中列出的技能词为实时、准确地了解企业对人才的需求提供了可能。本文将技能词抽取任务转化为序列标注问题,借鉴了命名实体识别或者术语抽取的方法。然而,由于中文的语义和上下文情形的复杂性以及手工标注成
人体动作捕捉技术一直是计算机视觉和计算机图形学研究的热点之一,这项技术被广泛应用于机器人、虚拟现实、影视动画、步态康复和运动分析等各项领域。现有的动作捕捉方法大多数都需要为实验者佩戴相关的动作传感器,设备昂贵并且对采集的环境有较高的要求;其它的一些方法则是利用数据集驱动人体建模完成三维动作的重建,这种方法过于依赖数据集的特征,扩展性较低。因此本论文提出通过深度学习和双目立体视觉相结合的方法实现人体
随着大规模集成电路的发展,网络通信数据量的激增,对高速数据传输系统的要求越来越高,传统的基于电互连的片上网络由于集成过多的IP核会导致高功耗、易受电磁干扰、高传输时延等问题,限制着未来多核处理器的发展。相对比电互连片上网络,光互连片上网络由于带宽大、传输速度快、不易受电磁干扰等优点,逐渐受到科研院校的关注,但在数据量小、路由距离较近的情况下,光互连片上网络的优点无法弥补光电转换过程和链路配置带来的
情感是人类表达个体思想的主要方式,在日常生活中占据着非常重要的地位。情感识别是当前人工智能和人机交互领域的重要研究内容,被众多研究人员广泛关注。情感识别的早期研究大多基于单一的模态,随后发现采用单一的模态进行情感识别具有很大的局限性,而不同模态之间提取的情感特征在一定程度上能够互补,通过对不同模态融合进行情感识别,能够进一步的提升识别精度。语音和人脸表情是人类表达情感最快捷、直接的方式,成为了情感
近年来,汽车逐渐成为人们生活中新的多媒体中心,与汽车相关的智能交通、车联网等新技术也被陆续推广开来,这使得车载通信系统正向着宽频带多频带的方向发展。因此,拥有更宽的频带,覆盖多个通信频段的天线成为汽车通信的一个研究重点。本文以电磁偶极子为基础,围绕具有宽带、多频带的天线展开研究。论文的主要研究内容和成果如下:1.基于电磁偶极子的宽带、多频带双极化天线研究。通过研究电磁偶极子的辐射原理以及天线辐射片
微型水下航行器在海洋资源勘探、生态监测、民事救援及军事侦查等方面可发挥重要作用。模仿水生生物设计的水下航行器具备生物一些运动及形态特性,除具有体积小、成本低、便携等特点外,还具有推进效率高、机动性强、噪声低等特点。因此,针对微型水生生物开发相应的微型水下航行器具有重要意义和实用价值。金边龙虱具有优异的游泳能力且能在陆地较快爬行,是设计微型潜水机器人的绝佳素材。龙虱的身体结构与其游泳特性有密切关系,