【摘 要】
:
近年来,由于无人机具有高度机动性、成本低、部署灵活等优势,利用无人机搭载通信设备作为空中基站在辅助地面基站通信上发挥着越来越重要的作用,同时,无人机空中基站也面临着三维位置部署,基站覆盖优化等技术挑战。灵活合理地进行无人机三维位置部署可以获得更优的空中基站覆盖性能从而保证更多用户的正常通信。该研究针对人烟稀少的偏远山区场景下地面基站建设困难,通信品质差的问题,以最大化基站覆盖率为目标,对空地信道建
论文部分内容阅读
近年来,由于无人机具有高度机动性、成本低、部署灵活等优势,利用无人机搭载通信设备作为空中基站在辅助地面基站通信上发挥着越来越重要的作用,同时,无人机空中基站也面临着三维位置部署,基站覆盖优化等技术挑战。灵活合理地进行无人机三维位置部署可以获得更优的空中基站覆盖性能从而保证更多用户的正常通信。该研究针对人烟稀少的偏远山区场景下地面基站建设困难,通信品质差的问题,以最大化基站覆盖率为目标,对空地信道建模和无人机基站三维位置部署问题展开研究。主要研究内容包括:(1)基于射线跟踪理论,利用反向射线跟踪算法寻找到山地场景下收发两端之间的射线路径,建立射线跟踪模型;在此基础上,为了提高有效射线路径的寻径效率,提出了改进的区域划分加速算法;进一步,为了验证所提加速方法的有效性,分别使用论文中所提出的加速算法与传统的八叉树加速算法进行了仿真,从仿真结果的所需求交面数、仿真运行时间、接收功率误差三个角度出发,对比分析了两种算法的加速效果。(2)根据建立好的山地场景下的射线跟踪模型,改变发射端的三维位置,构建空地信道模型,仿真分析了山地场景下空地信道的传播损耗特性;然后利用基于射线跟踪算法的Wireless Insite软件验证了所构建的空地信道模型的正确性,说明了论文中构建的空地信道模型可以用于预测山地场景下空地信道的传播特性。(3)利用Wireless Insite软件仿真分析了无人机高度、固定高度下位置变化等因素对空中基站覆盖性能的影响;为了优化空中基站覆盖性能,重点研究了无人机三维部署问题,论文利用k-means++算法对地面用户进行聚类分簇,从而在水平维度确定了所需无人机的个数以及无人机的水平投影位置,然后通过高度爬升的方法求得使路径损耗最小化时每个无人机的最佳高度,确定了最终的无人机三维位置优化部署方案;通过实施优化方案,与优化前的仿真结果比较,证明了论文中所用算法及优化方案的可行性;并将k-means++算法与现有的用于多无人机基站位置部署的k-means算法进行了优化效果与仿真效率的对比分析。
其他文献
随着温室大棚数量的增长以及农村劳动力数量的下降,可以在恶劣环境中自主作业的温室植保机器人成为当前研究热点。因为在温室内无法使用GNSS进行定位导航,所以实现温室内植保机器人的建图导航具有重要意义。本文以实现温室内植保机器人的自主运行为目标,设计基于视觉、激光融合的建图导航系统,主要工作内容如下:首先根据温室机器人的工作场景,分析机器人建图导航系统的需求,设计多传感器融合的建图导航系统方案。建立机器
烷类气体同属于碳氢类气体,具有许多相似的物理和化学性质,并且烷类通常混合在一起,现有的检测技术在遇到混合烷类时难以辨别其主要成分。甲烷作为最常见的烷类气体,广泛存在于日常生活和工业生产之中,并且属于危险性气体,对甲烷的辨别十分必要且重要。甲烷辨别对于保障人们的生产生活安全、保护环境等都有重要的意义。为实现甲烷气体的辨别功能,本论文首先通过对比分析,选择当下前沿的NDIR检测技术,设计采用四光源单传
随着社会的不断发展,我国的公路里程井喷式增加,汽车保有量也急剧增加,因台风、暴雨、冰雹、寒潮、雾霾等恶劣天气引发的交通事故频发,给国民经济造成了不可估量的损失。目前,交通安全已经成为社会发展的热点问题。为了做到对交通运输环境实时监测和突发事件及时预警,建立基于物联网和大数据的道路交通气象灾害监测预警系统迫在眉睫。针对上述情况,通过对现有的国内外技术进行研究分析,本文设计了一种便携式道路交通气象信息
随着城市化的快速发展,消防安全隐患与日俱增,消防安全管理和灭火救援面临新课题。由于城市建筑建设周期较长,大部分消防管道埋地敷设,导致阀门、管道腐蚀严重,漏水点较多。部分单位消防供水达不到设计要求,严重时会导致无水可用,一旦发生火灾会造成严重后果。因此消防供水监测系统就显得尤为重要。针对上述问题,本文结合物联网及其关联技术,设计了一种消防供水智慧监测系统。系统包括智能终端、管理平台、云服务器和手机客
视频目标分割是一种对视频中的前景目标和背景区域进行分离,实现像素级分类的任务,在视频编码、姿态分析、自动驾驶以及短视频娱乐等方面具有广泛的应用。根据在测试阶段视频所给标注形式的不同,该任务可以分为无监督、半监督、弱监督和交互式四大类别。随着深度学习技术地不断发展,视频目标分割取得了很大的进步,但现有的许多算法都是以牺牲分割速度为代价来提升分割精度,并且在复杂场景下分割的效果往往比较差。本文对弱监督
三维人体姿态估计的目标是在三维空间中预测人体关键点的位置。由于其具有广泛的应用前景,如:动作识别、增强现实和训练机器人等,因此一直是计算机视觉领域的研究热点问题。特别是近年来随着深度学习的不断发展,提出了诸多不错的三维人体姿态估计算法,但是依然存在很多问题有待解决。比如在单目3D姿态估计任务中,四肢关节(即腕、踝等)的自由度大于其他关节(即髋、胸等)。从而使得估计误差会沿着人体部位的生理结构累积,
在现代复杂工业过程中,随机不确定性尤其是非高斯不确定性十分常见,给系统造成的影响也是无法避免的。在以往的研究中,大多假设随机变量服从高斯分布,但在实际的随机系统中,系统输出不一定服从高斯分布,所以对于非高斯系统,原有的采用均值和方差的方法已经不能够完全描述系统的特性,而SDC理论的研究对象恰好是非高斯随机系统。本文以电力系统为背景,在电力系统中,由于太阳能和风能发电的间歇性、随机性和波动性显著增加
图像是社交媒体中主要的信息传递媒介,用户可以通过图像传达情绪。研究图像情感的自动分析方法在机器人情感交互、多媒体分析等任务中具有重要应用需求。然而情感是一种抽象且主观的语义信息,同时图像特征与图像情感之间存在复杂的非线性关系,图像情感分类仍是一项具有挑战性的任务。图像内蕴含的情感是图像全局特征的综合反映,且图像情感拥有极性特征,不同的细粒度情感会呈现出相同的情感极性,但现有的工作未能有效利用上述特
近年来,随着三维数字化产业的兴起,三维人脸重建成为了计算机视觉领域研究热点之一,吸引了越来越多研究者的关注。而基于单幅图像的三维人脸重建因其获取数据简单,建模容易的特点成为研究主流。传统的基于单幅图像的三维人脸重建模型存在重建精度低,建模成本高等问题。随着深度学习的发展与进步,基于深度学习的单幅图像三维人脸重建方法大大提升了重建的三维人脸的精度,在三维人脸重建任务中得到了广泛的应用。本文针对现有基
移动自组网(MANET)是一种无基础设施、自组织、快速部署的无线网络,被广泛应用于抢险救灾、机动作战、野外搜寻等领域。作为MANET网络重要支撑技术的路由协议(AODV、DSR和OLSR等)是在网络高度安全的基础上设计的,其安全性已经不能满足MANET网络的新需求,如果不加以引入适当的安全机制,会导致MANET网络路由遭受重放、黑洞和自私等各种内部恶意攻击。本文针对MANET网络节点的内部攻击,即