论文部分内容阅读
以系统科学、林学、生态学和森林可持续经营等理论为指导,以环洞庭湖区的森林健康评价为研究对象,从森林健康的内涵入手,利用样地调查数据、森林资源二类调查数据与遥感数据,从典型样地、小班与景观三个尺度开展森林健康评价研究。将云模型首次运用于森林健康评价研究之中,运用熵权法确定各尺度中评价指标权重,丰富了森林健康评价理论与方法。主要研究内容和研究结论如下:(1)构建了不同尺度下的森林健康指标体系。(1)在研究区内沅江市龙虎山林场、汨罗市桃林林场等十个基本调查单元(林场)内共选取60个典型样地,调查分析了样地中树种类型、胸径、树高等相关指标,从结构性指标与功能性指标等方面进行了典型样地特征分析,选取了多样性指数等10个指标组成典型样地森林健康评价指标体系。(2)借助森林资源二类调查、遥感监测数据,从结构、活力性、可持续性和抗干扰性四种属性作为指标,通过定性、定量分析后筛选出11个评价指标构成了小班森林健康评价指标体系。(3)利用森林资源二类调查数据和哨兵2号MSⅠ数据,将环洞庭湖区的森林景观划分为24种类型,并计算了各种类型的景观指数,通过指标筛选,最终构建了由聚集指数等8个指标组成的景观健康指标评价体系。(2)分析了目前的森林健康评价方法,在研究相关评价方法的理论与原理的基础上,首次将熵权-云模型法应用于森林健康评价中。运用熵权-云模型法对环洞庭湖区不同尺度下的森林健康进行了评价,得到了如下结果:(1)60个典型样地的森林健康状况总体较好,处于健康等级Ⅰ级至Ⅴ级的样地数分别为7、19、28、6、0个;(2)通过对等距间隔抽取的4627个小班的评价得知,环洞庭湖区的整体健康水平一般,处于最高健康等级的小班仅有2个,占0.04%;健康等级为Ⅱ级的小班数为2171个,占46.92%;健康等级为Ⅲ级的小班数为964个,占20.83%;健康等级为Ⅳ级与Ⅴ级的小班数为920个与570个,分别占比19.88%与12.32%,说明存在严重健康风险的小班不少;(3)通过对研究区的24种景观类型进行评价,景观层次的森林健康状况总体较好,所有景观类型的健康等级处于中间等级,其中处于Ⅱ至Ⅳ等级的景观分别为5类、15类与4类。(3)为验证云模型法用于森林健康评价的适应性与优势,将基于乘除法原理的多目标规划方法和云模型法的研究区森林健康评价结果分别与单因子最低值和中值予以比较分析。基于乘除法原理的多目标规划评价法的结果趋向于单个因子的最低值,结果过于极端,而云模型法的评价结果则与单因子中值整体相对吻合,证明了云模型法用于森林健康评价的优势。(4)依据三个尺度的评价结果,分别从不同视角提出了研究区森林健康经营措施,为针对性地开展森林经营提供了科学依据。典型样地森林健康评价为维护与提高样地内部整体结构稳定性提供参考,提出了环洞庭湖区的杨树林等典型优势树种及血防林等功能性树种的经营对策;依据小班尺度的森林健康评价结果,有针对性地为各健康等级森林小班经营与管理提出了优化策略;景观尺度的健康评价结果为森林景观规划与景观质量提升提供了科学依据,从研究区的立地水平、景观规划与调整以及景观类型水平等提出了优化措施。本文从典型样地、小班与景观三个尺度评价了研究区的森林健康状况,首次将云模型应用于森林健康评价领域,很好地解决了评价过程中定量指标与定性评价结果间的相互映射问题;熵权法有效解决了指标权重赋值的主观性;多尺度评价有助于多视角掌握森林健康状况,从而为生产经营与生态保护提供科学依据;遥感技术的充分运用,有效弥补了调查数据的不全面性与不及时性,提高了森林健康评价的效率与有效性。