论文部分内容阅读
随着微电子技术和超大规模集成电路的快速发展,软硬件协同设计的应用范围越来越广,硬件的异构程度和软件的复杂性都达到了前所未有的程度。技术上的不断进步和成熟,使研究人员正逐步由RTL级设计向系统级设计转移。然而目前这一设计领域对系统的高层设计仍然研究不足,较多注重于RTL级和底层芯片的设计,对系统设计规范描述不够,传统的建模技术不能满足系统级设计的要求,结果使设计周期变长,设计修改困难。因此提高设计的抽象层次,采用模型驱动架构(MDA)的设计技术,在整个开发过程中以系统的建模行为驱动设计,已经成为解决问题的有效途径。本文尝试在系统级软硬件协同设计中融合先进的MDA的技术成果,探索出一种模型驱动的软硬件协同设计方案,解决系统功能建模、不同模型(ECDM到SystemC模型)间的自动转换等关键技术问题,使之能有效地分离功能设计与软硬件的具体实现;通过重用已有的组件,扩大设计空间;在不同抽象层次上进行综合与验证,改善设计性能,提高设计效率。作者完成的研究工作和贡献主要有以下几点: ■ 针对消费类数字应用产品的更新换代快、设计周期短的特点,提出了一种基于模型驱动的系统级设计方案。该方案采用具有实时处理的ECDMfExtended Co-Design Model),模型作为系统功能描述模型,以软硬件协同设计为主要特征的SystemC模型作为实现模型,从而有效地分离了功能设计与具体实现;在设计初期能够对系统功能进行验证,纠正设计错误,因此可降低设计成本;通过自动化的模型变换来实现系统级综合,利用组件重用来优化设计空间搜索,因此能够提高系统设计的性能和开发效率。 ■ 扩展了已有CDM(Co-Design Model)模型的实时响应特性,使之能有效地提高设计方案中系统建模的能力。扩展后的模型称为ECDM模型。CDM模型作为系统级功能描述模型,能够在高层描述和调度执行系统功能、允许不同模块并发处理,但是它没有衡量不同时间约束对于系统实现的影响程度,并且同一模块不能对多个并发条件10关系进行响应。ECDM模型通过扩展条件10关系的响应时限,增强模块处理的外壳功能,解决了CDM模型的不足,使ECDM模型具有更广泛的应用范围。 ■ 提出了相应的模型转换的映射规则和算法,其特点为可灵活设置约束参数,重用已有组件等,从而可以达到设计空间优化搜索、提高设计性能的目的。