论文部分内容阅读
激光二极管泵浦的全固态激光器(DPSSL)具有高效率、高亮度、易于小型化的优点,成为近年来激光研究领域的一个热点。对于激光二极管(LD)端面泵浦的高重复频率、高峰值功率掺Nd3+激光器,所属四能级激光系统的1.06μm脉冲激光器及其倍频绿光激光器已被广泛研究,其性能可满足激光雷达、光电对抗和激光加工等多个行业的需求;但作为准三能级激光系统的0.9μm激光器及其倍频蓝光激光器,受众多因素的制约,发展较为缓慢,而全固态蓝光激光器具有广阔的应用前景,尤其是脉冲蓝光激光在激光水下通信和探测等领域有着特殊的用途。鉴于此,本文致力于高重频高峰值功率蓝光激光器的研究,以期能为脉冲蓝光激光器的发展和应用做出一定的贡献。本论文首先对全固态蓝光激光器的发展状况做了系统的介绍和分析,明确了其中存在的问题和实现高重频高峰值功率蓝光激光输出的努力方向,针对掺Nd3+准三能级激光器及其倍频蓝光激光的发展状况做了较为详细的介绍。对于新型的Nd:GdVO4激光介质,采用有限元分析法和干涉条纹法,理论模拟和实验测量了LD端面泵浦下激光介质的端面热形变,确定了Nd:GdVO4的杨氏模量和泊松比分别为E=135GPa和ν=0.35。针对掺Nd3+准三能级激光器所受的严重热效应,实验测得了不同泵浦功率下912nm Nd:GdVO4连续激光器的热透镜焦距,推导出了912nm连续激光器的热负载比约为ξ=0.36,并验证了取值的合理性。此外,分析了LD端面泵浦Nd:GdVO4激光器激光介质的热炸裂极限,为后续激光器的设计提供了理论依据。室温下运转的掺Nd3+准三能级激光系统,激光下能级存在着较多粒子数布居,由此而引起的再吸收效应影响着激光器的输出性能。根据激光速率方程理论,建立了包含再吸收效应的掺Nd3+准三能级连续激光器理论模型,分析了再吸收效应对激光阈值功率、输出斜效率和功率的影响,并对激光介质的掺杂浓度和长度、泵浦光及振荡光的空间分布以及输出镜的透过率等参量进行了最佳化设计。经实验的优化,实现了高功率掺Nd3+准三能级连续激光输出,分别获得了最高连续功率为16.2W的912nm激光、15.5W的914nm激光和17.2W的946nm激光输出。为衡量掺Nd3+激光介质准三能级激光运转下的再吸收效应强弱,通过实验与理论计算结果对比,估算出912nm Nd:GdVO4、914nm Nd:YVO4和946nm Nd:YAG连续激光器的再吸收截面σr分别约为(1.0±0.5)×10-20cm2、(0.5±0.5)×10-20cm2和(0.5±0.5)×10-20cm2。为改善LD端面泵浦固体激光器的散热条件,提高掺Nd3+准三能级激光输出性能,设计并应用了高效的微通道散热器,并探索了铟封技术。为获得高重频、窄脉宽、高峰值功率的掺Nd3+准三能级脉冲激光输出,从调Q理论出发,建立了高重频声光调Q激光器的理论模型,分析了声光调Q 912nm Nd:GdVO4激光器主要性能与注入泵浦功率和重频的关系。在此基础上,实验研究了高重频声光调Q掺Nd3+准三能级脉冲激光输出性能,10kHz运转重频下,获得了最高峰值功率为9.13kW、6.25kW和12.0kW的912nm、914nm、946nm激光输出,对应的脉宽和峰值功率分别为25.2ns、33.6ns、24.4ns。为补偿掺Nd3+准三能级脉冲激光器更为严重的热透镜效应,提高输出激光的性能,设计了凸-平非稳腔热补偿技术并应用于946nm Nd:YAG脉冲激光的实验研究,10kHz重频下获得了最高峰值功率为31.5kW的946nm激光输出,对应的脉宽为13.7ns,且激光光束质量也得到了显著地改善。最后,理论模拟了Cr4+:YAG被动调Q脉冲激光器的输出性能,分析了影响其激光性能的主要因素,并开展了被动调Q 912nm脉冲激光实验研究。为获得高重频高峰值功率脉冲蓝光激光输出,采用热不灵敏V型腔结构,实验研究了腔内倍频声光调Q脉冲蓝光激光的输出性能。重频10kHz时,获得了最高峰值功率为3.51kW、2.25kW和4.0kW的456nm、457nm、473nm脉冲蓝光激光输出,对应的脉宽分别为37ns、37.4ns、33.1ns。相同V型腔结构下,实验研究了腔内倍频Cr4+:YAG被动调Q 456nm脉冲激光性能。为压缩输出激光脉宽,进一步提高蓝光激光峰值功率,采用腔外倍频声光调Q掺Nd3+准三能级激光的方法,结合非稳腔热补偿技术和高效倍频技术的应用,获得了高重频高峰值功率蓝光激光输出。重频10kHz下,456nm和473nm脉冲蓝光激光的最高峰值功率为2.3kW和16.7kW,对应的脉宽分别为21.3ns和9ns,最高运转重频分别可达到100kHz和50kHz。其中,473nm脉冲蓝光激光最高输出功率下的光束质量为Mx2=1.5、My2=1.36,且20分钟内功率不稳定性小于1%。