基于SDN的数据中心链路负载均衡研究

来源 :青海师范大学 | 被引量 : 0次 | 上传用户:liangxianke
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网的发展,近几年网络规模和网络流量出现井喷式的增长。数据中心面临的流量压力与日俱增,如何对网络流量进行合理地分配,缓解数据中心的负荷压力,保障网络的链路畅通就成为了需要解决的问题。传统的网络架构由于采取分布式的布局,难以进行全局性的优化;因此本文研究使用具有集中控制特性的软件定义网络(Software Defined Network,SDN)来解决数据中心的链路负载均衡问题。SDN的集中控制以及软件可编程的特点使其相较于传统网络的分布式控制能够制定更好的负载均衡策略,本文也将基于此设计自己的负载均衡方案,其中的创新点如下:(1)构建一种基于SDN的数据中心链路负载均衡方案,其中包括信息收集模块、PB-IACO算法路由模块、流表转发模块;完成以上三个模块的设计与实现。(2)对标准蚁群算法优化,设计了一种基于信息素更新改进的PB-IACO(Pheromone Based–Improved Ant Colony Optimization)算法,用于PB-IACO算法路由模块进行路由寻路。实验仿真阶段,在网络仿真平台Mininet上仿真出Fat-Tree拓扑,该拓扑是目前数据中心最常使用的网络拓扑。将ECMP算法、DLB算法、以及本文基于PB-IACO算法的负载均衡策略先后部署在Ryu控制器中,并将Ryu控制器与Mininet仿真平台相连接,模拟数据中心的网络环境,进行多组仿真实验。统计和对比在不同的流量负载下,每种算法取得的网络性能指标的平均值。最终通过实验证明,在流量负载偏小特别是只有0.1Mb/s的情况下,三种算法在平均带宽利用率、平均网络吞吐量以及平均传输时延网络指标的表现都比较接近。但当流量负载逐渐增加,特别是达到0.9 Mb/s的情况下,不论是哪种网络性能评估指标,PB-IACO算法的表现都是最好的,特别是平均传输时延比ECMP算法少了近100ms。最终证明了本文方案较好的负载均衡效果以及PB-IACO算法的优越性。
其他文献
情感是认知过程中重要的一环,使计算机像人一样具有感知各种情感的能力,是人工智能领域的一个全新课题。语音情感识别(Speech emotion recognition,SER)是情感识别领域的重要研究方向,旨在让计算机能够领悟人的情感,实现人与机器之间的顺畅沟通。但语音情感识别领域当前存在诸如:缺乏有效的情感特征集、缺乏有效的情感识别模型等问题。本文从提升语音情感识别模型的识别性能出发,进行了基于深
语音端点检测是一种从掺杂有背景噪声的语音信号中区分出语音和非语音信号的技术,它直接影响着语音识别、语音增强等语音处理技术的性能。因此,语音端点检测算法的研究对语音处理技术性能的提高有着关键性的作用。目前,语音端点检测算法主要有基于特征阈值和基于模型匹配两类。其中,基于特征阈值的端点检测算法通过对比提取的语音信号的特征值和实验前设定的阈值进行比较,从而实现语音和噪声的判定。基于模型匹配的端点检测算法
语音是人与人之间最直接、最自然的交流方式。在现实生活中,语音会受到各种噪声的影响,噪声降低了语音信号的可懂度与清晰度,影响了人们之间的正常交流。语音增强就是针对受噪声干扰的语音而提出的强化语音的一种技术。因此,研究语音增强技术对语音通信、助听器等领域的发展具有重要的现实意义。藏语语音增强是藏语人机交互的基础工作,相对于汉语和英语等语种的语音增强技术,藏语语音增强技术还处于发展阶段。目前,实现藏语语
语音识别作为人机交互的第一步,具有很重要的现实意义。在现实生活中,语音往往会受到噪声、混响以及说话人的干扰,使得语音识别系统性能降低。因此,为了解决上述问题,提高语音识别系统对于含噪语音的识别准确率,本研究针对孤立词与连续语音分别提出相对应的深度神经网络模型,从而用于鲁棒性语音识别。本研究的贡献如下:(1)针对孤立词鲁棒性语音识别,提出了迁移自编码器双向循环神经网络模型TAEBN。为了提取含噪语音
由于国内外语音识别研究技术的飞速发展,汉语、英语、德语等资源丰富语言的语音识别技术取得了良好的识别结果,特别是端到端技术的兴起避免了多个模块固有的缺陷,降低了语音识别模型的复杂性。然而,藏语语音识别由于其语料库构建困难和方言的特点导致发展缓慢,因此,提高藏语语音识别系统的性能具有重要的研究意义。目前,藏语语音识别面临诸多挑战:第一,尚未拥有权威公开的藏语语料库资源,语料库构建不易;第二,在特征提取
随着通信技术的换代革新,5G为物联网发展注入了新的活力,物联网技术已在医疗、共享经济、智慧城市等领域被广泛的应用。与此同时,伴随着物联网技术的快速发展,新的安全问题也在不断的涌现出来。当前,大量的物联网设备没有安全认证机制,设备间的信任问题严重依赖于中心化第三方服务,但在愈来愈多设备入网的大趋势下,中心化管理机制在面对海量的设备连接时,需要消耗大量的资源来提供安全服务,同时又面临着单点故障的安全风
双通信模式可穿戴天线由于可以实现体表通信和体外通信间信息的无缝传输,在近年来引起了研究人员的关注。本文根据工作机制将现有的双模式可穿戴天线分为三类,并针对每一类研究设计了一款天线。所设计的三款天线可以方便地集成在衣物表面或直接穿戴,在无线体域网中具有较好的应用前景,具体的工作内容为:(1)设计了一款双频段双模式可穿戴天线。该天线可应用于工业、科学和医疗频段中2.4-2.4835 GHz和5.725
机器类型通信(Machine Type Communication,MTC)使所有机器具备连网和通信能力,是实现物联网(Internet of Things,Io T)的关键技术,有着广泛的应用前景和应用价值。随着机器类型通信在网络中的应用越来越广泛,安全问题逐渐成为人们关注的焦点。传统的一对一安全方案可以保证数据的保密性和完整性,保护用户的隐私数据,但当海量设备进行业务数据请求时会导致核心网拥塞
数字化和大数据的快速应用使得各种应用场景对存储系统整体提出了更高的要求。传统的以写为主的负载场景正在向着读密集型方向逐步偏移,尤其体现在电子商务,各大短视频应用等领域。本文从FUSE以及LevelDB这两种当下使用广泛的存储引擎存在的对于读请求不太友好的问题出发,在LevelDB和原生libfuse上层API中设计实现了一种buffer cache系统,以降低磁盘I/O的比率,从而整体提高系统响应
当今时代,5G、物联网、云计算等技术的高速发展,带来了数据信息量的爆炸式增长,这对存储系统提出了更高的要求。存储系统的存取效率、数据的可靠性将受到严峻挑战。RAID存储系统具有良好的存取性能、优秀的可扩展性再加上相对低廉的成本,因而被广泛应用在各大企业的存储服务器中。本文基于RAID6存储系统,对RAID6编码的布局与重构、RAID6在线扩容方案的优化进行研究,并设计出两种方案。内容如下:本文提出