论文部分内容阅读
超强超短激光的持续迅猛发展,为人类提供了前所未有的全新实验手段与极端物理条件。激光聚焦强度在过去的十多年里已提高了7-8个量级,实验室条件下已经能够达到聚焦强度1021W/cm2乃至1022W/cm2量级,激光脉冲的时间尺度已小于10fs,接近激光光场的单个振荡周期。如此强的激光光场可将物质迅速电离形成等离子体,光和物质的相互作用也进入了强相对论非线性光学的全新范畴。在其推动下,基于等离子体的激光加速粒子、高次谐波和阿秒脉冲以及激光惯性聚变核物理等研究得到广泛关注,它们不仅在医疗、能源等方面具有重要应用,而且为探索粒子运动、结构以及性质等前沿基础物理问题提供了很强大的手段和条件。本论文开展了相对论强激光与等离子体相互作用进行电子加速以及相关物理问题研究,取得如下研究结果:
1.搭建了相对论强激光与气体相互作用进行激光尾波场加速电子的实验研究平台,开展了百太瓦强度飞秒激光与氢气喷流相互作用进行电子加速实验研究。在1mm喷嘴长度情况下,通过改变气体的背压,实现对等离子体密度的控制,研究了不同等离子体密度条件下激光加速电子的情况,获得了总电量约为10nC、截止能量约为10MeV、电子有效温度约为4MeV的电子束。增加气体喷流长度到1.5mm时,电子的能量和有效温度进一步提高,获得了电量约为2.6nC,截止能量为80MeV,有效温度为26.2MeV的电子束。利用所产生的高电量的电子束轰击钛膜,由轫致辐射产生高能量的X射线,对不同结构、不同材料的固体靶材进行成像探测。
2.系统研究了利用烧蚀型毛细管在高压放电驱动下稳定产生预制等离子体通道的参数条件,并利用光谱方法对通道结构进行了时间和空间分辨测量。开展了百太瓦级激光在预制毛细管通道中进行电子加速的实验研究,成功实现了160TW飞秒激光脉冲在4cm长度的放电烧蚀毛细管通道中的导引,获得了最大能量达1.8GeV的高能电子束。
3.设计了由两段不同密度等离子体组成的级联尾波场加速器,第一级中加速产生的电子束能够被注入到第二级等离子体中进一步被加速。二维粒子模拟研究了通过控制注入级中的电子束的注入和加速,可实现注入级产生的电子束在时间和空间上与加速级尾波场的加速相位完全匹配。在注入级加速中,电子的注入和加速依赖于尾波场的演化,通过改变激光的聚焦位置和等离子体密度分布,能够使得产生的电子束注入到加速级的最大加速场中,从而在最大程度上改善电子束的能散度。二维粒子模拟通过选取合适的激光参数和聚焦位置,等离子体密度条件等,最终可实现消除暗电流的级联尾波场加速器,获得700MeV,能散度0.6%,横向发散角为1.4πmmmrad的单能电子束。
4.研究了等离子体密度的选择和操控对等离子体加速器中电子束的性能和动力学行为的影响。研究了在线性机制下((a)0~1),单级激光等离子体加速器中的各个参数与等离子体密度的关系,并给出了不同密度情况(1015~1018cm-3)下能量1TeV的多级加速器的参数设计,分析了由于同步辐射能量损失引起的电子动力学的演化,并利用二维粒子模拟验证了不同密度下尾波场的定标率。
5.考虑电子束回旋振荡引起的辐射阻尼作用,通过数值解析方法描述等离子体加速器中电子束的动力学行为,研究了电子的能量、能散度和横向发散角在加速过程中的演化,发现了辐射阻尼作用引起的电子束的自冷却效应。研究结果表明,加速的初始时刻,随着电子能量的增加,其相对能散度降低,横向发散角增大;随后由于回旋振荡引起的辐射阻尼作用,电子束的发散角以恒定的速率逐渐减小。研究发现辐射阻尼率为一常数RT=2/3,且与初始电子束的性能参数以及激光尾波场参数均无关。电子束的自冷却效应能够使得电子束能被加速至TeV甚至PeV量级,归一化发散角和能散度的降低能够满足高能物理的要求,如高能对撞机、高亮度的γ射线的产生等,且对天文学和高能宇宙射线的研究具有很大的帮助。