双功能液态铅锂包层中子学实验与数值模拟研究

来源 :中国科学技术大学 | 被引量 : 2次 | 上传用户:xjl121121
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
聚变包层是聚变堆的重要部件,具有氚增殖、能量转换、屏蔽等功能,是聚变堆中子学设计分析需考虑的关键部件之一。液态铅锂包层是一种极具发展潜力的聚变包层候选方案,具有氚增殖率高、可在线提氚和热效率高等优势,是目前国际聚变包层研究的重要方向。双功能液态铅锂(Dual Functional Lithium-Lead,缩写DFLL)包层是由中国科学院核能安全技术研究所·凤麟团队(简称凤麟团队)提出的高性能氚增殖包层设计方案,可用于演示和验证氦冷包层和氦/铅锂双冷包层技术。
  聚变包层中子学设计主要依靠中子学数值模拟计算,计算的准确性受计算软件、核数据库和仿真模型精细度等多因素的影响。为确保聚变堆的可靠运行,有必要通过中子学实验验证数值模拟计算的准确性。论文参考DFLL包层设计方案,利用DFLL中子学实验模块(简称DFLL模块)开展了多中子学参数的实验测量,并通过实验数据和数值模拟计算结果对比分析,验证了DFLL包层中子学参数计算的准确性。在此基础上,针对中国聚变工程试验堆模型开展了DFLL包层全堆中子学性能的计算分析与设计优化。主要研究内容与创新如下:
  (1)DFLL模块中子学实验研究。基于强流聚变中子源(HINEG)装置,利用DFLL中子学实验模块开展了产氚率和活化反应率等中子学参数测量实验。实验针对大尺寸模块中子学实验需要高通量中子的实验需求,发展了适用于旋转靶的强流中子源探测技术。利用铌活化箔与238U裂变电离室组合测量,解决了旋转靶无法利用伴随粒子法监测中子源强的技术问题,成功获取了旋转靶高精度源强分时数据,源强测量不确定度小于4.20%。在此基础上,实验采用Li2CO3片和多活化箔组,分别测量了包层中心轴线不同位置处的产氚率和活化反应率。其中,产氚率测量不确定度最大值为4.83%,活化反应率测量不确定度最大值为5.38%。
  (2)利用获取的中子学实验数据开展中子学计算验证。研究首先通过中子输运设计与安全评价软件系统“超级蒙卡”(简称SuperMC)依据DFLL模块中子学实验方案进行精确建模,并结合JEFF3.2和FENDL3.1数据库开展数值模拟计算,获得与实验对应的计算数据。其后,通过“计算实验对比”(简称C/E)分析评估中子学计算的准确性。研究显示不同中子活化箔反应率的C/E在0.78-1.10之间,产氚率C/E在1.04-1.08之间,计算与实验具有较好一致性。
  (3)DFLL包层全堆中子学优化设计。研究采用SuperMC构建了采用DFLL包层的中国聚变工程试验堆中子学模型,并针对可能影响全堆氚增殖性能的DFLL包层结构设计参数开展了敏感性量化分析,获得了包层不同结构对全堆增殖性能影响的敏感性趋势及规律,发现并指出第一壁护甲造成全堆氚增殖性能明显下降的现象及原因。通过对比不同第一壁护甲对氚增殖性能的影响,结合包层全堆优化布局,提出了可满足聚变堆氚自持要求的DFLL包层优化设计方案。
  综上所述,本文通过DFLL模块的中子学实验积累的强流中子源实验经验将为今后大尺寸模块中子学实验提供宝贵的经验。通过实验与数值模拟计算对比分析,验证了液态铅锂包层中子学数值模拟计算的准确性,为DFLL包层的全堆中子学分析与优化提供了依据。同时,开展的DFLL包层氚增殖性能敏感性趋势及规律分析和全堆中子学分析与优化,为中国聚变工程试验堆包层技术的发展和应用提供有力参考及技术支持。
其他文献
空间分布式捕获锁定是航天器实现有效载荷在轨操控的关键技术之一,在空间站载荷更换、货运飞船载荷运输和航天器在轨服务等任务中具有巨大的应用前景,是未来我国以及其他航天大国的研究重心之一。自上世纪六十年代以来,国外研究机构对空间载荷捕获锁定技术开展了大量研究并进行了在轨验证。近二十年来,国内研究机构取得了一些捕获锁定技术研究进展,但多着眼于整体式捕获锁定系统,适应性更强、应用更广泛的分布式捕获锁定技术研
学位
中国即将于2020年进行火星探测,不同于月球比较单一的表面特性,火星的地表环境不仅包含松软崎岖的土壤和沙地,同样有坚硬岩石等地形。几何特征崎岖、物理特征多变的地面特征使得火星车运行过程中极易产生滑转、滑移甚至是沉陷等现象,为火星探测任务带来了前所未有的挑战。因此,中国的火星车将采用一种主动悬架的构型,通过轮步式移动等功能,极大地提高了火星车的移动能力。本文针对六轮主动悬架火星车,建立车轮-地面相互
学位
学位
学位
聚变堆主机关键系统综合研究设施(Comprehensive Research Facility for Fusion Technology,CRAFT)是中国重大科学工程,建成后将成为目前国际磁约束聚变研究领域中参数最高、功能最完备的综合性研究平台,大功率移能电阻是其失超保护系统的关键设备之一。本文根据CRAFT大型超导测试平台中最大2H电感值,90kA额定电流及10kV额定电压的大型超导磁体参数
实现氚自持是中国聚变工程试验堆(CFETR)的核心目标之一,为了实现氚自持,CFETR的设计要求氚燃烧率大于3%,同时要确保1GW的聚变输出功率。本文应用OMFIT框架下的集成模拟工作流STEP评估了为同时达到上述两个目标,所需的弹丸加料参数。为此,需要基于弹丸消融和沉积物理模型准确计算弹丸的消融率和沉积剖面。  本文基于Parks发展的最新消融模型给出的消融率定标率计算弹丸消融率,并对其进行了改
低温氘氚燃料弹丸注入具有较高的粒子注入深度,能够有效提高等离子体的加料效率,是未来国际热核聚变堆(ITER)及其它装置实现高密度等离子体运行的关键手段。除此之外,选择合适的弹丸注入速度和尺寸,将弹丸注入到等离子体边界,还能用于控制未来聚变堆边界局域模(ELM)排出的极高热负荷,从而保护聚变堆的第一壁材料。“东方超环(EAST)”是中国自行研制的国际上首个非圆截面全超导中型托卡马克,具有类似ITER
发展更为高效和安全的先进反应堆(如:GEN-Ⅳ、加速器驱动的次临界反应堆、核聚变反应堆等)已成为目前核能领域内的研究热点之一。例如,在先进裂变反应堆领域,发展小型模块化反应堆,尝试提高铀资源利用率(60%-70%),并重复使用现有的乏燃料以确保减少核废料和提高经济竞争力;在聚变领域内,正在探索惯性约束、磁约束约束方式及多种聚变包层,以提高聚变堆的安全性、经济性和环境友好性等。安全始终是核能事业发展
为建设未来聚变堆所需的更高功率微波系统,本文从4.6GHz低杂波电流驱动系统实际需求出发,设计了一种可吸收500kW连续波的水负载。  针对4.6GHz低杂波电流驱动系统高功率、长脉冲运行工况,选用了导热快、热膨胀系数低、抗折强度高且微波损耗小的氮化铝陶瓷作为水负载的隔离介质;然后根据阻抗匹配理论设计并优化了水负载微波结构;再拟合出水负载的功率沉积密度分布,对水负载进行了流热耦合和热应力分析。计算
学位
液态铅锂包层具有结构简单、载热能力强、氚增殖比高等优点,是聚变堆包层发展的重要方向之一。但由于包层处于高能中子辐照、高热负载、高压力梯度等严苛的环境中,包层内存在高压氦气流道破裂引发的内破口事故(In-box Loss of Coolant Accident,In-box LOCA)可能性。当事故发生时,高压氦气会迅速注入铅锂流道,形成复杂的两相流动和冲击波效应,可能会导致峰值压力超过设计限值,进
学位