【摘 要】
:
由于钙钛矿材料结构的多样性及其优秀的光电性能,在光电器件等领域受到了广泛的关注。如何进一步改善其电子特性以及提高光电性能成为了当今的研究热点。本文基于第一性原理计算方法,通过改变掺杂浓度和施加压力等方式调控无机卤化物钙钛矿材料的电子结构和光学性质,寻找性能优越的钙钛矿材料。具体研究内容如下:第一章绪论部分介绍了钙钛矿材料的研究现状、结构、应用以及制备方法,以及本文的研究内容。第二章介绍了第一性原理
论文部分内容阅读
由于钙钛矿材料结构的多样性及其优秀的光电性能,在光电器件等领域受到了广泛的关注。如何进一步改善其电子特性以及提高光电性能成为了当今的研究热点。本文基于第一性原理计算方法,通过改变掺杂浓度和施加压力等方式调控无机卤化物钙钛矿材料的电子结构和光学性质,寻找性能优越的钙钛矿材料。具体研究内容如下:第一章绪论部分介绍了钙钛矿材料的研究现状、结构、应用以及制备方法,以及本文的研究内容。第二章介绍了第一性原理、密度泛函、Hartee-Fock方法、Thomas-Fermi近似、Hohenberg-Kohn定理、交换关联泛函和赝势理论等相关理论,并介绍了相关软件和计算方法。第三章通过改变掺杂I的浓度和外部压力大小来调控CsPb2Cl5钙钛矿材料的电子结构和光学性质。通过计算结合能,能带结构和态密度研究了I的格位占有率和电子贡献情况。通过掺杂不同含量的I,可以有效地控制钙钛矿材料的光学性质,从而找到最佳的掺杂含量。通过施加不同的外部压力,进一步改善了该材料的光学性质。第四章基于双钙钛矿Cs2AgBiBr6材料,通过掺杂和施加压力调控去改善钙钛矿Cs2Ag Bi Br6材料的电子结构和光学性质。通过计算结合能确定了掺杂I的最可能占据的格位,以此为基础分析了格位被占据后的电子性质和光学性质的变化。进一步研究了压力对能带结构、电荷密度和部分态密度等电子结构性质和光学性质的调控。第五章基于卤化物钙钛矿Cs3BiBr6材料,研究了通过调控外部压力和掺杂离子来改善钙钛矿Cs3Bi Br6的电子结构和光学性质。通过结合能确定掺杂I-的格位占据率。在确定格位之后,分析了掺杂该格位后的钙钛矿Cs3Bi Br6:I-的电子结构性质,通过能带结构、电荷密度和态密度等方式研究了不同掺杂浓度及压力对该材料光学性质的调控情况。
其他文献
与卫星通信和地面蜂窝通信相比,无人机(Unmanned Aerial Vehicle,UAV)通信具有易于部署控制,组网方式灵活,成本适中等优点,在未来移动通信领域,尤其是第六代(Sixth Generation,6G)移动通信系统中显示出了广阔的应用前景。论文主要针对无人机中继通信系统,提出了无线传输策略方案,并进一步对系统的性能进行分析,为未来无人机通信系统的设计提供理论依据和设计方案。论文的
半导体激光器凭借着其体积小,集成度高,调制特性好,使用寿命长等特点成为了现代光通信网络以及光子集成电路中重要的元器件。由于光纤传输具有大带宽与低损耗的特点,利用双波长激光器拍频产生微波信号具有很高的应用前景,成为了研究的热点。此外,利用双波长半导体激光器制作的激光雷达系统可以用于高精度的测速测距。这些因素使得双波长半导体激光器拥有很高的应用价值。对于双波长半导体而言,降低其制作难度,生产成本,提高
量子信息科学发展至今已经完美的将量子力学原理融入进信息科学中,通过量子的方式可以解决经典的方式所不能达到的效果。光子作为一种传输速度最快、与环境耦合性最弱的一种粒子,常常被用来当做量子态的载体。通过量子态编码传输信息,是量子通信任务中常常用的手段,本文主要讨论了几种常见的量子通信任务。本文首先简介了量子信息的相关背景和研究意义,交代了量子通信任务涉及的一些基本概念。第二章主要介绍光量子通信任务涉及
随着物联网(Internet of Things,IoT)的飞速发展,海量的机器类通信设备(Machine-Type Communications Device,MTCD)开始出现在通信网络中。MTCD数量的指数级增长以及独特的通信特点给传统的蜂窝网络架构和资源管理方法带来了很多挑战,包括网络拥塞、频谱资源不足和MTCD自身资源受限等。针对这些挑战,本文对机器类通信场景下的资源管理方面进行了研究,
二十一世纪是信息时代,人们对信息技术的需求也与日俱增。高速和大容量信息传送需求使得光电片上集成成为信息领域值得期待的发展前景。光源集成在芯片上需要解决的问题包含诸多方面,包括器件的大小、器件与器件之间的耦合效率、器件产生的信号特性等。本论文针对以上问题做出相关的研究,具有重大的实际意义。另外,GaN是第三代半导体材料,它有3.4e V的禁带宽度,属于宽禁带直接带隙半导体材料,具有产生蓝紫光的独特优
在通信领域内,由于半导体激光器体积小,重量轻,可靠性好等优点已经成为光纤通信中的核心器件之一。许多性能优良的半导体激光器在光通信、照明、光电传感及光存储等领域应用广泛。尤其是氮化镓(GaN)基半导体激光器,由于GaN具有很多硅材料不具备的优异性能,具有高效率、高亮度、高稳定性等诸多优点,是高频、高压、高温和大功率应用的优良半导体材料,所以由GaN基材料制备的半导体激光器广泛地应用在各个领域。本论文
随着科技的发展和实际工程需求,微波器件逐渐小型化,集成化,尺寸已经达到了纳米级,而器件越小,其对于温度的敏感度就越高,因此电磁热效应对于此类微波器件的性能影响就越为显著。随着微波电路日益复杂,传统的计算电磁学数值算法的求解效率和精度已经不能满足实际需求,因此一种高效高精度的分析方法的研究显得尤为必要。本文提出一种以有限元算法(Finite Element Method,FEM)为基础,结合区域分解
锂离子电池因自放电低、循环使用性高、容量高等特点得以商业化应用,便携式电子设备、可再生资源和新能源汽车等领域的储能系统都需要锂离子电池。然而地壳中的锂矿产含量(0.0065%)非常低,并且锂枝晶生长问题影响锂离子电池的安全性和稳定性。钠离子电池由于钠储量丰富(2.83%)、高充放电速率和无安全隐患等优势得到广泛关注,然而钠离子电池电极材料非常匮乏。二维材料具有特殊的结构和优异的物理性质,在能源存储
压电式微型能量收集器是未来取代传统电池的一种新型器件,近几年已经成为一个研究热点。利用压电效应工作的能量收集器,具有更高的电能输出。当外部激励为声能时,可以方便安全地进行能量传输。压电式微型能量收集器的研究已经初具规模,并且即将用于医疗植入设备、环境监测等领域,但是仍然有很多性能上的不足亟待解决,如能量转换率偏低,能量收集方向单一以及工作频带窄等问题。本文主要的研究内容如下:(1)介绍了压电式微型
表面等离子体激元是一种特殊的光频率表面电磁波,它存在于金属和介质的界面,并在界面的法向方向上呈指数衰减。为了将表面等离激元应用到微波以及太赫兹频段,人工表面等离激元的概念被提出来了。人工表面等离激元的在天线、射频电路以及通信系统上具有广阔的应用前景。本文基于人工表面等离激元的特性,研究并设计了三款微波器件,分别是基于分立元件的检波器、混频器两款有源器件和一款无源器件滤波器。实验结果表明,仿真结果和