论文部分内容阅读
许多应用场合对高分子材料提出了耐高温,高强度的特殊要求。为了改善聚酯高分子材料的耐高温性能,本课题设计用含有饱和六元环结构的环氧环己烷代替二醇与马来酸酐及邻苯二甲酸酐反应,得到耐高温型不饱和聚酯。以环己二醇和马来酸酐的反应程度,环氧环己烷和苯甲酸的反应程度的大小为依据,探索以环氧环己烷代替二元醇与马来酸酐、邻苯二甲酸酐反应的可行性,确定影响反应程度的因素。通过对影响因素进行正交实验设计,并对实验结果进行极差分析,确定最优的反应条件,并通过红外光谱分析法、核磁共振分析法确定聚合物结构,以及凝胶渗透色谱分析法测定聚合物的分子量及分子量分布。改变原料中不饱和酸酐与饱和酸酐的摩尔比,合成一系列不饱和聚酯树脂。将合成的一系列不饱和聚酯树脂制成纯固化物,并通过热重分析法、差示量热扫描分析法测得纯固化物的耐热指数及玻璃化转变温度;同时将系列不饱和聚酯制成涂料配方,在PC板上喷涂成膜,测定漆膜的硬度,及煮沸前后的附着力。研究结果显示:环氧环己烷与马来酸酐、苯酐、环己二醇反应合成不饱和聚酯为聚醚嵌段的不饱和聚酯,分子量1200左右,分子量分布1.2。最佳反应条件是:环己二醇与邻苯二甲酸酐、马来酸酐的反应温度为120℃;加入环氧环己烷后的反应温度为100℃;环己二醇与邻苯二甲酸酐、马来酸酐的反应时间为1.5h;环氧环己烷滴加完毕后的反应时间为3h;环氧环己烷的滴加时间为2h;催化剂用量为总质量的0.25%。合成的不饱和聚酯纯固化物耐温性较市场上耐热邻苯型不饱和聚酯树脂亚邦198,进口产品DSM954好,且喷涂而成的漆膜在PC板上有良好的附着力及耐高温高湿性能。