论文部分内容阅读
作为清洁、高效、安全和可持续的替代能源,氢能日渐受到人类青睐,未来有望建立集成制氢、储氢、输运及转化利用等多环节的氢能系统,实现全球化石能源经济向氢能经济的转型。氢气制备是构建氢能系统的首要工作,而利用资源丰富且无污染的水制取氢气是公认的最佳选择。其中,热化学循环水分解制氢方法由于具备诸多优点而受到重视,尤其是硫碘循环被认为是最有前景的方法之一。热化学硫碘循环水分解制氢中第一步Bunsen反应(SO2+12+2H2O→ H2SO4+2HI)的实现方法及进行程度等影响后续HI和H2SO4分解反应,制约着整个硫碘循环系统。传统Bunsen反应延续的是美国GA公司提出的在过量碘和水的条件下进行反应,生成HI和H2SO4自发分层。为了减少甚至避免过量碘和水的加入,电化学Bunsen反应方法应运而生,有望实现硫碘循环系统的简化。鉴于实际硫碘循环系统中有HI返回Bunsen反应,针对初始HI存在下的四元多相Bunsen反应动力学和热力学平衡进行研究。提高初始HI浓度或者温度加快了反应动力学速率,液。液分层提前出现,且缩短了达到热力学平衡的时间。但HI量过高不利于两相分离,故HI/H2O摩尔比须控制在0~1/18的合理范围内。提高初始HI量增加了H2SO4相杂质,但提高温度改善了液-液相平衡分离特性。加入初始HI使HIx相中HI浓度达到了超恒沸,有利于减少后续HI浓缩步骤,实现硫碘循环系统的优化。提高初始HI量或温度造成SO2平衡转化率略有降低。综合考虑,较高温度345~358K、HI/H2O摩尔比0~1/36是比较理想的工况范围。围绕电化学Bunsen反应开展了基础实验研究,探讨了两极酸溶液浓缩和电池电压的变化规律。随着电解进行,阳极H2SO4和阴极HI的浓度均呈上升趋势,阴极12浓度降低,而电压整体呈现上升趋势。提高电流密度增加了单位时间内得失电子数,生成H2SO4和HI量增加且电压增大,但电压超过3V会造成阳极侧石墨电极的腐蚀。提高温度加快了电极反应速率。增加12/HI摩尔比既可降低过电势也可增大溶液欧姆电阻。大部分工况条件下电流效率大于90%,甚至接近100%,表明了该电池能量转化性能较好。增加电流密度增大了能耗,而提高温度或H28O4浓度则相反;改变HI浓度或12/HI摩尔比时,则出现峰值能耗。以代表性的Nafion 117和115膜为研究对象,探讨了质子交换膜在电池中的特性。膜的质子传递数t+基本上大于0.9,甚至接近1,除了在高温下,Nafion 115膜的质子传递能力显著下降;水的渗透系数β依据工况条件变化不一。膜的传输特性与酸浓缩效果密切相关,高t+和低β值易获得高浓度HI;相反,可生成高浓度H2SO4。分析膜两侧交叉污染时,发现阳极HI比阴极H2S04的浓度高2-10倍。提高电流密度、温度或初始I-/HI摩尔比,HI和1-12S04的摩尔通量均增加。提高H2SO4浓度促进H2S04传递而抑制HI渗透,提高HI浓度时情况相反。膜的微观表征表明电化学反应后的膜出现褶皱且有固体颗粒沉积,造成了BET表面积增大和平均孔径减小。经活化后,膜的性能得到恢复,有利于延长其寿命。对电化学Bunsen反应的平衡电势进行了实验和理论研究,首先基于电化学原理推导出平衡电势的理论模型,其次通过实验探讨了各参数对平衡电势的影响。提高S02或12浓度会降低平衡电势,而提高H2SO4或HI浓度则相反;温度升高,平衡电势会降低。通过对实验数据拟合分析验证了该模型的准确性,并确定了代表电解质非理想特性和膜内浓度分布的参数M和Z均与溶液浓度无关,Z基本不随温度变化,但M与温度存在指数关系,温度越高,M值越低。最后,提出了平衡电势经验公式,可以很好地重现实验数据,实现了电池平衡电势的预测。基于电化学工作站原理研究了电化学Bunsen反应的电极反应机理及动力学特性,利用循环伏安法测量两极反应,判断出阳极SO2氧化和阴极12还原均不可逆:依据峰值电流定性分析了扩散传质速率。测量两极反应的电化学阻抗谱,并对Nyquist图作等效电路拟合。阴极反应等效电路为一个溶液欧姆电阻串联着一对并联的电荷传递电阻和常相位角元件;阳极反应等效电路由电荷传递电阻和常相位角元件并联组成。计算并评估了交换电流密度(j0)和标准反应速率常数(k0)两个重要动力学参数,当阴极HI浓度为8mol/kgH2o、I2/HI摩尔比为0.5,阳极H2SO4浓度为13mol/kgH2O时可以获得较高的电极反应动力学速率。对基于电化学Bunsen反应的硫碘循环系统进行了流程设计和模拟,计算了产氢量为1mol/s时的系统质量平衡和能量平衡。考虑内部换热、废热回收发电,计算出系统热效率达48.98%。相比于使用传统Bunsen反应的硫碘循环系统,使用电化学Bunsen反应的硫碘循环系统极大地简化了流程,降低了能耗,从而提高了热效率。通过改进优化,未来有望进一步提高系统热效率及经济性。