论文部分内容阅读
随着我国经济的不断发展,汽车逐渐进入千家万户。自动挡汽车因其起步平稳、操纵方便、乘坐舒适性好、节能环保、安全可靠等优点。是未来车辆发展的方向。自动变速器作为车辆自动变速最重要的核心部件,其内部分离离合器与结合离合器的配合对整车换挡品质有很大影响。对于装备液力机械式自动变速器的车辆,动力在发动机传递至整车中存在大量未知和非线性因素,此外液体参与动力传动时表现出来的动态特性等,都给自动变速器的系统控制带来了不同程度的困难。特别是换挡过程中结合离合器的自适应控制。本文结合哈尔滨工业大学电液伺服仿真及试验系统研究所与贵州凯星液力传动机械有限公司关于“大功率液力机械式自动变速器的开发”的合作项目。对大功率液力机械式自动变速器换挡过程进行研究。首先对装备贵州凯星3000系列液力机械式自动变速器车辆的动力传动路线进行建模。分别建立发动机惯量模型、液力变矩器模型、行星齿轮传动机构模型以及整车负载模型。以整车最佳动力换挡为目标,求解出贵州凯星3000系列液力机械式自动变速器的换挡规律,并讨论行驶环境对换挡规律的影响。建立整车动力传动系统仿真平台。仿真出汽车一挡升二挡时液力变矩器涡轮转速曲线,并与实车数据进行对比,验证模型的正确性。建立贵州凯星3000系列液力机械式自动变速器换挡离合器液压控制系统模型,对模型进行仿真。并就换挡电磁阀占空比由最大值下降至某一定值时,离合器液压缸进油口油压的波动进行分析。确定最优占空比下降方式。对贵州凯星3000系列液力机械式自动变速器内部行星齿轮传动机构的运动学和动力学进行分析。将离合器-离合器式换挡过程划分为四个阶段。建立“扭矩相阶段”和“惯性相阶段”下涡轮轴角加速度、变速器输出轴角加速度与变速器输入轴转矩、制动器传递的转矩以及变速器输出轴转矩的关系。为换挡过程闭环控制提供理论依据。以换挡过程整车的动力性能与舒适性能为评价指标,搭建换挡控制单元模型。对换挡过程控制参数进行改进和优化,在提升换挡过程整车动力性能的同时保证了换挡舒适性。