论文部分内容阅读
教学过程的“最优化”理论,是苏联著名教育理论家巴班斯基创立的。他指出:“教学过程的最优化。就是指通过选择一种适合教育过程具体情况的教学方法,使教师和学生在花费最少的时间和精力的情况下,获得最好的效果。”他同时强调,最优化并不是什么特别的教学法或教学手段,而是在符合教学规律和教学原则的基础上,教师对教育过程的一种目标明确的安排,是教师有意识、有科学根据的教学方案的选择。
实践告诉我们,要在数学教学中达到“最优化”,至少应努力做到以下几点:
一、确定最优的教学目标是实现教学过程最优化的前提
教学目标是把握着整个教学过程的导向。是教学过程的出发点和归宿。最优的教学目标应考虑全面、适度和关联性。所谓全面是指教学要完成教养、教育和发展三大任务。在确定教学目标时要深挖教材中的潜在因素,结合学校的具体教学条件和学生现状,定出具体教学目标,确定认识、理解、掌握和熟练掌握四级要求,区分出知识和方法、智力的发展和能力的培养、思想教育和非智力因素。将基础知识和基本能力以及发展学生的计算能力、思维能力、数学语言能力、建立初步空间观念、培养空间想象力、抽象能力和分析问题、解决问题的能力。以及思想品德教育、良好习惯的培养等多种要求要有计划地落实到每节课的教学中,使每节数学课尽可能地完成多项任务。所谓适度是指确定教学目标时不能片面追求全面性而牵强附会,不能因面面俱到而不分主次,不要认为目标定得越高、越全面越好。应该使教学目标与学生原有的知识水平、思维水平以及年龄特点相适应。如数学语言能力的培养,在不同年段有不同的目标,同一年段在不同阶段所培养的目标也不同。所谓关联性是指数学是一门系统性很强的学科,其教材内容之间有着十分紧密的联系,并存在着层次性。在确定课时教学目标时,要考虑到前后课时之间相互依存、发展、铺垫、延伸的关系,要体现出每个课时教学目标的层次和侧重点。
二、安排最优的教学内容是实现教学过程最优化的根本
如果将教学目标比做骨骼的话,那么教学内容就是肌肉,教学目标要依附于教学内容,才能充分显示其生命力。合理的教学内容在很大程度上决定着能否实现“省时”、“高效”。教师手中的教科书只是合理安排教学内容的前提条件,还应该根据实际情况灵活使用教材,合理安排课时教学内容,克服随意性。教师要吃透教材,领会教材编排意图,根据教材特点,围绕教学目标,考虑学生实际,做到密度恰当、坡度适当、深度得当。对于学生刚接触到的新知识,或抽象的不易理解而需要分散难点的,内容应适当少安排。有些知识虽然是学生刚接触到。但难度不大的,可以利用知识迁移的方法。另外可适当多安排些内容。这样,可以从教学内容上保证在规定时间内取得最好的教学效果。
三、实施最优的教学方法是实现教学目标的关键
教学方法对完成教学任务,实现教学目的具有重要的意义。当确定了教学目的,并有了相应的教学内容之后,就必须有行之有效的教学方法,否则,完成教学任务、实现教学目的就要落空。由此可见,优化教学方法,从一定意义上来说是关系教学成功的重要条件。现代教育学对教学法的研究颇为深刻,新的教学法层出不穷,这就要求教师在教学过程中根据具体情况,依据教学目的、教材内容、学生情况,进行合理的选择和利用。
经验告诉我们,在一定场合下,包括“满堂灌”在内的各种教学方法都是有效的。过去,由于人为地割裂教学过程与教学方法的整体联系,曾有过一些极端的做法。老师为主的“填鸭式”到丢掉课本盲目“发现”、追求外国“时髦”的教学方式,对传统一概否认等等,严重地妨碍了教学过程的最优化。对此,国内学者深刻指出:“其实‘传统’并不一定是贬义,只是相对于‘现代’而言。接受学习不一定是机械的……,发现学习不一定是有意义的。”这是颇具启示的。
各类教学论或教学法专著多从某一侧面讨论教学方法的类型和功能,有化繁为简的特点。如讲授法、讨论法、演示法、实验法、练习法等等,内涵清晰,操作性强。但忽视教学方法的系统性,因而造成以局部研究为主的“分析式”教学方法的局限。而类似“问题一发现教学法”、“程序教学法”、“单元结构教学法”、“掌握学习教学法”等以研究整体为出发点的“综合式”方法,其最大特色是展开解决问题的系统思路,突出具体方法的组合应用,而不限于某种具体方法。例如,可以引导学生通过阅读、讲授、解疑、实验、观察、讨论等多种途径,实施“问题一发现教学法”。每一种方法可以顺利地解决某一种教学任务。因此,对教学方法子系统中的某一种具体方法,很难论其长短。过分地推崇一种方法或贬低另一种方法的效用,都是不可取的。在特定的时空条件下,只能看到其对教学系统优化的“贡献”如何,或从教学方法的“组合”上讨论其功能优劣。
四、选择最优的教学手段是优化教学的保障
当前,信息技术飞速发展,知识经济已见端倪,我们已经进入了一个新世纪,面临人类文明史上的又一大飞跃——由工业化社会进入到信息化社会。随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用,而最优的教学手段离不开电化教学,幻灯、投影、电视、录像、计算机等在数学教学中已显示出明显的优越性。实践证明,多媒体手段的科学运用,可以降低教学难度,加强直观性,增强知识的可接受性。电教手段的应用不仅有利于体现数学思想方法、有利于突破教学难点、有利于动态地显示数学知识的内在联系;充分利用电教手段安排课堂教学结构,还有助于发挥学生的主体作用;运用电教手段进行教学,可创设愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果。还有如教学必修4中探究函数y=Asin(x+w)的图像,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明:运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。
关于数学的“最优化”教学问题,是一个较为复杂的系统工程,我们在这方面的探索仅仅是初步的。本文意在抛砖引玉,力图使更多的同仁在更广的方面对这个问题进行更深的探索,促使我们的数学教学提高到一个新水平。
实践告诉我们,要在数学教学中达到“最优化”,至少应努力做到以下几点:
一、确定最优的教学目标是实现教学过程最优化的前提
教学目标是把握着整个教学过程的导向。是教学过程的出发点和归宿。最优的教学目标应考虑全面、适度和关联性。所谓全面是指教学要完成教养、教育和发展三大任务。在确定教学目标时要深挖教材中的潜在因素,结合学校的具体教学条件和学生现状,定出具体教学目标,确定认识、理解、掌握和熟练掌握四级要求,区分出知识和方法、智力的发展和能力的培养、思想教育和非智力因素。将基础知识和基本能力以及发展学生的计算能力、思维能力、数学语言能力、建立初步空间观念、培养空间想象力、抽象能力和分析问题、解决问题的能力。以及思想品德教育、良好习惯的培养等多种要求要有计划地落实到每节课的教学中,使每节数学课尽可能地完成多项任务。所谓适度是指确定教学目标时不能片面追求全面性而牵强附会,不能因面面俱到而不分主次,不要认为目标定得越高、越全面越好。应该使教学目标与学生原有的知识水平、思维水平以及年龄特点相适应。如数学语言能力的培养,在不同年段有不同的目标,同一年段在不同阶段所培养的目标也不同。所谓关联性是指数学是一门系统性很强的学科,其教材内容之间有着十分紧密的联系,并存在着层次性。在确定课时教学目标时,要考虑到前后课时之间相互依存、发展、铺垫、延伸的关系,要体现出每个课时教学目标的层次和侧重点。
二、安排最优的教学内容是实现教学过程最优化的根本
如果将教学目标比做骨骼的话,那么教学内容就是肌肉,教学目标要依附于教学内容,才能充分显示其生命力。合理的教学内容在很大程度上决定着能否实现“省时”、“高效”。教师手中的教科书只是合理安排教学内容的前提条件,还应该根据实际情况灵活使用教材,合理安排课时教学内容,克服随意性。教师要吃透教材,领会教材编排意图,根据教材特点,围绕教学目标,考虑学生实际,做到密度恰当、坡度适当、深度得当。对于学生刚接触到的新知识,或抽象的不易理解而需要分散难点的,内容应适当少安排。有些知识虽然是学生刚接触到。但难度不大的,可以利用知识迁移的方法。另外可适当多安排些内容。这样,可以从教学内容上保证在规定时间内取得最好的教学效果。
三、实施最优的教学方法是实现教学目标的关键
教学方法对完成教学任务,实现教学目的具有重要的意义。当确定了教学目的,并有了相应的教学内容之后,就必须有行之有效的教学方法,否则,完成教学任务、实现教学目的就要落空。由此可见,优化教学方法,从一定意义上来说是关系教学成功的重要条件。现代教育学对教学法的研究颇为深刻,新的教学法层出不穷,这就要求教师在教学过程中根据具体情况,依据教学目的、教材内容、学生情况,进行合理的选择和利用。
经验告诉我们,在一定场合下,包括“满堂灌”在内的各种教学方法都是有效的。过去,由于人为地割裂教学过程与教学方法的整体联系,曾有过一些极端的做法。老师为主的“填鸭式”到丢掉课本盲目“发现”、追求外国“时髦”的教学方式,对传统一概否认等等,严重地妨碍了教学过程的最优化。对此,国内学者深刻指出:“其实‘传统’并不一定是贬义,只是相对于‘现代’而言。接受学习不一定是机械的……,发现学习不一定是有意义的。”这是颇具启示的。
各类教学论或教学法专著多从某一侧面讨论教学方法的类型和功能,有化繁为简的特点。如讲授法、讨论法、演示法、实验法、练习法等等,内涵清晰,操作性强。但忽视教学方法的系统性,因而造成以局部研究为主的“分析式”教学方法的局限。而类似“问题一发现教学法”、“程序教学法”、“单元结构教学法”、“掌握学习教学法”等以研究整体为出发点的“综合式”方法,其最大特色是展开解决问题的系统思路,突出具体方法的组合应用,而不限于某种具体方法。例如,可以引导学生通过阅读、讲授、解疑、实验、观察、讨论等多种途径,实施“问题一发现教学法”。每一种方法可以顺利地解决某一种教学任务。因此,对教学方法子系统中的某一种具体方法,很难论其长短。过分地推崇一种方法或贬低另一种方法的效用,都是不可取的。在特定的时空条件下,只能看到其对教学系统优化的“贡献”如何,或从教学方法的“组合”上讨论其功能优劣。
四、选择最优的教学手段是优化教学的保障
当前,信息技术飞速发展,知识经济已见端倪,我们已经进入了一个新世纪,面临人类文明史上的又一大飞跃——由工业化社会进入到信息化社会。随着新课程实验的深入,它呼唤课堂教学要走向现代化,取而代之的是现代信息技术手段的广泛应用,而最优的教学手段离不开电化教学,幻灯、投影、电视、录像、计算机等在数学教学中已显示出明显的优越性。实践证明,多媒体手段的科学运用,可以降低教学难度,加强直观性,增强知识的可接受性。电教手段的应用不仅有利于体现数学思想方法、有利于突破教学难点、有利于动态地显示数学知识的内在联系;充分利用电教手段安排课堂教学结构,还有助于发挥学生的主体作用;运用电教手段进行教学,可创设愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学。例如,教学必修3中“统计”中的“数据收集和整理”的习题时,教师利用电脑设计教学情境,把课本上的插图变成实景,屏幕上有声有色地出现一辆辆摩托车、小汽车、大客车、载重车通过一路口,学生在实景中搜集数据,解决了课本难以解决的问题,学生的注意力集中,学习兴趣高涨,充分体会到实地收集数据的快感,收到事半功倍的效果。还有如教学必修4中探究函数y=Asin(x+w)的图像,利用多媒体展现图象的平移、变换实况,学生能直观的看到变化的过程情景,自然容易接受。教学实践证明:运用现代信息技术手段,对改变学生学习数学的方式,激发学生学习数学的兴趣,提高课堂高中数学教学效率将产生重大的影响。
关于数学的“最优化”教学问题,是一个较为复杂的系统工程,我们在这方面的探索仅仅是初步的。本文意在抛砖引玉,力图使更多的同仁在更广的方面对这个问题进行更深的探索,促使我们的数学教学提高到一个新水平。