论文部分内容阅读
在玻璃缺陷识别系统中,利用BP神经网络基本原理结合特征参数设计BP神经网络结构。为了更准确地识别玻璃表面缺陷,在传统BP神经网络算法基础上,提出加入动量因子、引入陡度因子以及调节学习效率的方法,并进行对比试验。仿真结果表明,3种方法均可提高缺陷识别率,但只有引入陡度因子的方法可使最优误差与期望误差最为接近,能够更好地改善网络收敛性。