论文部分内容阅读
本文把褐稻虱种群按其生长发育顺序划分为卵(E)、1~2龄若虫(S)、3~4龄若虫(L)和成虫(A)4个阶段,把各阶段的作用因子划分为相对独立的状态(states)。在稻田调查中分别记录其单位面积的数量。通过换算,计算卵、1~2龄若虫和3~5龄若虫的存活率(S_g,S_s,S_L)及各作用因子相对应的存活率(S_1,S_2,S_3,S_4,S_5,S_6),同时通过实验种群的产卵量(FP_FP_(?)),成虫逐日产卵概率(P_(?))和自然种群成虫逐日存活率(A_(?))组成的下代卵量概率,∑P_(?)(S_(?))~1组成褐稻虱自然种群生命表的各个组分。如果包含成虫迁移后的居留率S_,则根据生命表组分建立的种群趋势数字模型(Morris—Watt种群数学模型)可扩充为: I=S_ES_SS_LFP_FP_(?)S_t∑P_(?)(S_(?))~1 I=S_1S_2S_3S_4S_5S_6FP_FP_♀S_(?)∑P_H(S_(?))~1该数学模型有助于褐稻虱种群系统研究的各项分析
In this paper, the brown planthopper population was divided into four stages according to its growth and development order: egg (E), first to second instar nymph (S), third to fourth instar nymph (L) and adult Divided into relatively independent states (states). Record the number of units per unit area in paddy field survey. The survival rates (S_g, S_s, S_L) and the corresponding survival rates (S_1, S_2, S_3, S_4, S_5, S_6) of eggs, At the same time, the probability of oviposition of the experimental population (FP_FP_ (?)), The probability of daily egg lay (P_ (?)) And the daily survival of natural population (A_ (? ?) (S _ (?)) ~ 1 constitute each component of the natural population life table of the brown planthopper. The population trend numerical model (Morris-Watt population mathematical model) based on the life table components can be expanded to include I = S_ES_SS_LFP_FP_ (?) S_tΣP_ (?) (S_ (? )) ~ 1 I = S_1S_2S_3S_4S_5S_6FP_FP_♀S _ (?) ΣP_H (S _ (?)) ~ 1 The mathematical model is helpful for the analysis of the population system of the brown planthopper