论文部分内容阅读
针对图像分割中的灰度不均匀和轮廓初始化问题,提出一种基于区域的活动轮廓模型。将图像的全局信息和局部信息作为能量项驱动活动轮廓向目标边缘演化,以有效分割灰度不均匀图像,为保证图像分割的速度和精度,在能量方程中加入长度项和惩罚项,并采用梯度下降法得到该模型的最小化能量方程。实验结果表明,和局部二值拟合模型、局部图像拟合模型相比,该模型能分割灰度不均匀的图像,对初始轮廓曲线大小和位置更不敏感,且分割图像所需的迭代次数、迭代时间更少。