论文部分内容阅读
动量项技术是用来改善自适应盲源分离算法分离性能的有效手段,但算法在融入动量项后,其收敛特性对于动量因子的选取数值较为敏感,且算法的稳态性能仍要受到步长参数的限定.本文首先给出了动量项盲源分离算法的设计原理,分析了现有算法存在的两个缺陷性问题;然后利用梯度下降法构造了具有在线调整特性的动量因子自适应迭代规则,通过对动量因子的实时更新以消除固定动量因子算法的性能缺陷;在此基础上,基于凸组合理论设计了不同步长参数下两个变动量因子算法的自适应优化组合方案,从而在一定程度上缓解了步长参数对于算法性能的限定.在不同环