论文部分内容阅读
目的 应用MicroCT对正常月骨进行扫描和三维重建,分析正常月骨骨小梁的显微结构特点.方法 使用MicroCT对5例新鲜的正常月骨标本进行扫描,以DataViewer软件对扫描图像进行三维重建,确定并统计滋养孔.以CT Analyser软件对横断面图像进行重建,分别选取9个兴趣区(200× 200× 40,pixel3),计算各兴趣区内骨小梁骨组织密度(BV/TV)、骨组织表面积(BS)、骨面积体积比(BS/BV)、骨小梁厚度(Tb.Th)、骨小梁分离度(Tb.Sp)、结构模型指数(SMI)、异向度(DA)等参数,分析骨小梁结构特点.结果 MicroCT扫描数据经过三维重建后能够清晰显示正常月骨骨小梁的显微结构,我们发现冠状面上月骨骨小梁由远端向近端呈放射状分布,垂直于桡月关节面与头月关节面.放射状骨小梁为板层状,通过横形与斜形棒状骨小梁组成复杂的网状结构.头月关节面软骨下骨小梁为平行于关节面的板层状结构,十分致密,并向掌、背侧延伸,通过一处移行带转化为网状骨小梁.该结构与掌、背侧远极骨小梁的BV/TV、BS/BV、SMI、DA值差异均有统计学意义(P<0.05)、Tb.Th值差异无统计学意义(P>0.05),该结构与掌侧远极Tb.Sp值差异无统计学意义(P>0.05),而与背侧远极Tb.Sp差异有统计学意义(P<0.05).本组月骨标本的掌侧滋养孔平均为(2.80±0.84)个,平均直径(1.87±0.21)mm;背侧滋养孔平均(1.60±1.52)个,平均直径(1.27±0.21)mm.掌、背侧滋养孔直径差异有统计学意义(P<0.05),但掌、背侧滋养孔数目差异无统计学意义(P>0.05).结论 应用MicroCT可以获得正常月骨骨小梁的精细显微图像,并可用于分析月骨的滋养孔,正常月骨远侧关节面的掌、背侧骨小梁结构明显弱于中央部位.“,”Objective To analyze the micro-structures of normal lunates with micro-computer tomography (microCT).Methods MicroCT scans were obtained from 5 fresh cadaver normal lunates.The scanned data were reconstructed with the DateViewer software, with which the nutrient foramina were analyzed.After being reconstructed with the CT Analyser software, 9 regions of interest (200 × 200 × 40, pixel3) were chosen in a transverse plane so that the results of percent bone volume (BV/TV), bone surface (BS), bone surface/volume ratio (BS/BV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), structure model index (SMI), degree of anisotropy (DA) of ROIs could be obtained.Results High-resolution images of the trabecular micro-structures of normal lunates were obtained after 3D reconstruction of microCT scans of the lunate.The coronal 3D images demonstrated radially-arranged trabecular bone of normal lunate, spanning from the distal cortex to the proximal and perpendicular to the articular surface.The radially-arranged trabecular bone demonstrated lamellar-like structure, forming a complex net-like micro-construction combined with rod-shaped trabecular bones in other directions.The distal subchondral bone plate demonstrated lamellar-like compact construction, extending to the volar and dorsal cortex and paralleling with the distal articular surface.The distal subchondral bone plate transformed net-like construction through a transition zone.The distal lamellar-like compact construction had statistically significant differences in BT/TV, BS/BV, SMI, DA (P < 0.05), but no significant difference in Tb.Th (P > 0.05), when it was compared with the ROIs in volar and dorsal ends of the distal cortex.There was also statistically significant difference in Tb.Sp (P < 0.05) compared with the ROI in the dorsal end of the distal cortex, but no significant difference in Tb.Sp (P > 0.05) compared with the ROI in the volar end.There were (2.80 ± 0.84) nutrient foramina on volar cortex of the lunates with an average diameter of (1.87 ± 0.21) mm, and (1.60 ± 1.52) nutrient foramina on the dorsal cortex with an average diameter of (1.27 ± 0.21) mm.The differences of diameter between the volar and the dorsal foramina was significant (P < 0.05).However, there was no significant difference regarding to the nutrient foramina between the volar and the dorsal cortex.Conclusion High-resolution images of the normal lunates can be obtained with microCT to analyze the trabecular micro-structures and nutrient foramina.The trabecular bones of the volar and dorsal distal ends have lower intensity than those of the distal central subchondral bone plate.