论文部分内容阅读
本文证明了在任意满支承的随机赋范模上存在一个非零连续线性泛函的充要条件是它的基底空间至少存在一个原子;存在足够多非零连续线性泛函的充要条件是它的基底空间本质上由至多可数个原子生成。该结果表明经典的共轭空间理论对随机赋范模是普遍失效的,进一步揭示了随机共轭空间理论对随机赋范模发展的突出重要性。同时本文也包括了许多结果,它们表明许多由随机赋范模生成的经典赋准范空间拥有一个或足够多的非零连续线性泛函的特征成为一目了然!