论文部分内容阅读
近几年,各大社会媒体都在致力于提供良好的信息推荐服务,应对网络资源的增长和用户的个性化需求,然而数据稀疏性问题成为了影响推荐性能的主要障碍因素之一。本文在随机游走(RWR)算法的基础上进行了改进,提出了一种项目一标签导向的随机游走推荐模型(TRWR),针对特定用户分别在项目空间和标签空间中根据对象之间的相似性计算转移概率,进行有限步长的随机游走,在两个空间中都生成若干个待推荐项目,然后重新计算预测评分,最后对该用户进行个性化信息推荐。在计算对象之间相似性的过程中,本文采用了融合评分差异性和共同评分用户数的