基于尺度中心路径的求解SCLP的非单调光滑牛顿算法

来源 :数学物理学报:A辑 | 被引量 : 0次 | 上传用户:guihuxinxi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于CHKS光滑函数的修改.}生版本,该文提出了一个带有尺度中心路径的求解对称锥线性规划(SCLP)的非单调光滑牛顿算法.通过应用欧氏若当代数理论,在适当的假设下,证明了该算法是全局收敛和超线性收敛的.数值结果表明了算法的有效性.
其他文献
利用奇摄动理论证明了一类最优控制问题中内部转移层解的存在性,不但给出了内部转移层存在的条件而且确定了转移点的位置.同时利用边界层函数法基础上发展起来的直接展开法构造
借助整函数插值研究由函数的广义平移所生成的Mercer核矩阵及其逆矩阵权范数的上、下界估计问题,将定义在无限区间上整函数的广义平移所生成的Mercer核矩阵权范数界的估计转
在Asplund空间中,研究了非凸向量均衡问题近似解的最优性条件.借助Mordukhovich次可微概念,在没有任何凸性条件下获得了向量均衡问题εe-拟弱有效解,εe-拟Henig有效解,εe-
没有凸锥的闭性和点性假设,该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质.由此,在偏序局部凸空间的框架下,通过利用单调连续Minkowski泛函和单调连续半范,该文分