Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophioliti

来源 :地球科学学刊(英文版) | 被引量 : 0次 | 上传用户:rainbow_qu2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The chrome spinel (chromite) in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites. Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex (MOC), Yangtze Craton. Due to the metamorphism and intense deformation, most chromite grains in the MOC peridotites show typical chemical zoning (core-rim texture). The values of major and trace elements largely vary from core to rim within chromite grains, indicating that the chromites have undergone strong alteration and element mobility. Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC. The chromites from the MOC peridotites have higher Cr# values and lower Ni and Ga contents with respect to those from Phanerozoic mantle peridotites, indicating a higher degree of depletion. In-situ major and trace elements (e.g., Ga) characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures, indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.
其他文献
电场与人类的生产生活活动息息相关。为了测量各种电场参数,人们进行了深入的研究,发明了多种电场传感器。但是用于静电场测量的微型电场传感器至今未见报道。本文提出了一种新