论文部分内容阅读
目的针对奇异值分解算法存在的对角线失真、虚警错误等问题,引入一个寻找最抗攻击缩放比例的参数,提出基于增强奇异值分解的零水印算法。方法首先将离散小波变换作用于原始图像,对分离出的低频逼近子图进行不重叠分块,对分块后的低频逼近子图作离散余弦变换得到低频系数矩阵,再分别对每个块矩阵进行增强奇异值分解,将得到的最大奇异值与最大奇异值均值作比较构成特征向量;然后对水印图像进行Arnold变换和Logistic映射得到置乱加密后的水印图像;最后将特征向量和置乱加密后的水印图像分别作为细胞神经网络的起始值和控制输