论文部分内容阅读
将脑部组织从MR图像中提取出来已经成为脑部图像处理中的一个重要环节,它可以提高后继的脑组织定位、容积测量等处理的精确度。但由于脑MR图像往往具有偏移场、弱边界和强噪音,使得基于图像梯度信息的水平集模型很难得到真实解。高斯混合模型使用了图像全局信息,能较好地处理弱边界问题。但传统的高斯混合模型仅使用了灰度值分布信息,未对像素的位置进行考虑,这使得其在处理噪音图像时效果并不是很理想。利用图像多种信息构造新的信息场,使得由信息场构造的高斯混合模型更能降低偏移场、噪音等影响,同时防止曲线从弱边界泄漏。传统的