论文部分内容阅读
在杆连动问题中,由于杆对物体的作用力可能沿杆方向,也可能不沿杆方向。这给受力分析带来困难。对于杆连接在竖直平面内做圆周运动的物体,可以根据功能关系,确定杆对物体的做功,进而判断杆对物体作用力的方向,并可以推广到绳连接物体。
问题:
如图所示,质量分别为m和2m小球A和B分别固定在轻杆的中点和端点。杆可以绕O点自由转动。当杆在竖直平面内由水平位置转到竖直位置的过程中,杆对小球A、B做的功分别为多大?
朋友是我们为自己挑选的家人。
我们所恐惧的事情是那些早已发生过的事情。
解析:
小球A、B随轻杆转动过程中,系统机械能守恒,且瞬时角速度相等。设轻杆长为L,转到竖直位置时的角速度为ω。
由机械能守恒定律得:
mg×L2+2mgL=12m(ω×L2)2+12×2m(ωL)2
解得:ω=20g9L
设轻杆对小球做的功分别为wA和wB。
由动能定理得:
对于小球A:mg×L2+wA=12m(ω×L2)2
对于小球B:2mg×L+wB=12×2m(ω×L)2
解得:wA=-29mgL;wB=29mgL
可见,在轻杆由水平位置转到竖直位置的过程中,轻杆对A小球做负功,对B小球做正功。
问题拓展一
如图所示,在轻杆的中点A和端点B分别固定两个小球。杆可以绕O点自由转动。当杆在竖直平面内由水平位置转到竖直位置的过程中,杆OA段对小球的作用力方向可以表示为()
AF1BF2CF3DF4
问题:
如图所示,质量分别为m和2m小球A和B分别固定在轻杆的中点和端点。杆可以绕O点自由转动。当杆在竖直平面内由水平位置转到竖直位置的过程中,杆对小球A、B做的功分别为多大?
朋友是我们为自己挑选的家人。
我们所恐惧的事情是那些早已发生过的事情。
解析:
小球A、B随轻杆转动过程中,系统机械能守恒,且瞬时角速度相等。设轻杆长为L,转到竖直位置时的角速度为ω。
由机械能守恒定律得:
mg×L2+2mgL=12m(ω×L2)2+12×2m(ωL)2
解得:ω=20g9L
设轻杆对小球做的功分别为wA和wB。
由动能定理得:
对于小球A:mg×L2+wA=12m(ω×L2)2
对于小球B:2mg×L+wB=12×2m(ω×L)2
解得:wA=-29mgL;wB=29mgL
可见,在轻杆由水平位置转到竖直位置的过程中,轻杆对A小球做负功,对B小球做正功。
问题拓展一
如图所示,在轻杆的中点A和端点B分别固定两个小球。杆可以绕O点自由转动。当杆在竖直平面内由水平位置转到竖直位置的过程中,杆OA段对小球的作用力方向可以表示为()
AF1BF2CF3DF4