Nonlinear dynamic characteristics model of labyrinth seal based on Muszynska model

来源 :哈尔滨工业大学学报 | 被引量 : 0次 | 上传用户:yebailin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
An accurate seal forces model is the foundation to analyze the rotor-seal systems. In this paper, the Navier-Stokes equation and energy equation are solved to simulate the interior flow field in the labyrinth seal gap. The leakage rate is compared with the experimental results in the literatures. The maximum error is 4%,which proves that the method of employing CFD to simulate the interior flow field of labyrinth seal gap is reliable. Based on this, the interior flow field and fluid exciting force of stage teeth labyrinth seal are studied. By coupling with the Muszynska model, the method of defining the experience loss parameters in Muszynska model is proposed. The results indicate that the experience parameters obtained by the proposed method can depict the nonlinear exciting force of labyrinth seal better.
其他文献
本文利用混合控制体积方法在三角网格剖分下求解四阶强阻尼波动方程.通过使用最低阶Raviart-Thomas混合有限元空间和引入迁移算子把解函数空间映射成试探函数空间,构造了半离
本文研究了无限维李代数so2e((C)Q).利用其明确的生成元,确定了所有的非交换Poisson代数结构,推广了有限维的情形.
制备了新型固体碱催化剂KNO3/AlSBA-15,并以此催化大豆油与甲醇酯交换反应制备生物柴油,对其工艺条件进行了优化。结果表明:醇油物质的量比为12∶1,催化剂用量为大豆油质量的
为深入研究甘蓝S位点受体激酶(SRK)和S位点富含半胱氨酸蛋白(SCR)间相互识别的分子机理,以具有典型自交不亲和性的甘蓝D3为材料,利用巢式PCR分别扩增SRK胞外域(eSRK)和SCR,通
弹性成像作为一种重要的组织定征手段在过去20年里成为研究热点.传统的静态/准静态弹性成像难以从体外对体内通过机械方法进行有效施压,近年来研究者专注于新的远程"触诊"手
In this paper,taking the Lorenz system as an example,we compare the influences of the arithmetic mean and the geometric mean on measuring the global and local a
本文采用了水热合成法制备出介孔分子筛SBA-15,并创新性地利用微波液相介质法、微波固相法把纳米Eu2O3成功的组装到介孔分子筛SBA-15孔道内.所制备的(SBA-15) -Eu2O3主-客体
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
Two classical theories, the technology acceptance model (TAM) and the innovation diffusion theory (IDT), were integrated into a model for analyzing individual i
The notions of u-quasi-Hopf algebras and the quantum dimensioa dimu M of a representation M by u are introduced. It is shown that a u-quasi-Hopf algebra H is se