论文部分内容阅读
摘要: 研究了考虑船体垂荡运动时船用转子-轴承系统的动力学特性。首先,在非惯性参考系基于短轴承理论建立了船体垂荡作用下转子-轴承系统的动力学模型,结果显示垂荡作用下船用转子-轴承系统具有几何非线性特性;其次,采用数值方法,分析了系统的分岔图、最大Lyapunov指数、稳态响应、轴心轨迹、Poincaré映射等,并与船体不发生垂荡时的转子系统动力学特性进行比较;最后,研究了垂荡激励幅值对转子-轴承系统非线性动力学特性的影响。结果表明:垂荡运动会显著地影响转子的动力学行为。在转速较低时,系统呈现周期1运动,垂荡对转子的运动特性影响此时占主导作用;随着转速的增加,系统出现准周期、周期2和双Hopf现象,具有周期1、准周期、周期2和混沌运动等复杂动力学特性。
关键词: 非线性动力学; 船用转子-轴承系统; 垂荡; 短轴承模型
中图分类号: O322; O347.6 文献标志码: A 文章编号: 1004-4523(2019)03-0501-08
DOI:10.16385/j.cnki.issn.1004-4523.2019.03.015
引 言
舰船在航行时会产生横荡、纵荡、垂荡、横摇、纵摇和艏摇等运动。这些运动形式都是典型的牵连运动,会对船用转子-轴承系统产生严重的影响,如舰船航行的安全性、可靠性、舒适性以及隐蔽性和作战能力[1]。牵连运动对转子-轴承系统动力学特性的影响,主要集中在机载情况下转子系统的动力学问题。例如,文献[2]建立了飞机飞行条件下双盘悬臂转子系统的动力学模型,并对转子系统的振动特性进行了讨论;文献[3]研究了飞行器在机动飞行状态下,机载转子系统动力学响应的变化规律,结果表明飞行器垂直加速度分量过大或水平加速度过小的两个极限状态都会使原来稳定的SFD-转子系统变得不稳定。文献[4]对任意机动飞行条件下的飞机建立了柔性转子系统的线性动力学模型,并针对几种典型条件分析了系统的动力学特性。文献[5]建立了有不同类型支承条件及含有不同故障的转子系统模型,并对在Herbs机动飞行、水平盘旋、垂直面内正弦机动以及爬升-俯冲等机动飞行环境下转子系统的非线性动力学行为及振动机理进行了研究。
对于船体在航行中遇到风浪产生的牵连运动研究也取得一定的进展。文献[6]用Hamilton原理以欧拉角为参量描述船舶的摇摆运动,建立了船舶参数下纵横摇耦合运动的数学模型,研究了船舶的动力学响应。文献[7]在低雷诺数的水隧道中,通过测量力、力矩和对液体流量可视化研究,优化了经历横摇和垂荡运动的SD8020箔片水翼的推力产生性能和效率。文献[8]研究了经历横摇和垂荡运动的刚性箔推进性能的缩放规律,并通过水隧道实验验证了此规律。结果显示:推力、功率和效率的缩放数据等都与系统所减少的频率间存在依赖关系。文献[9]研究了船舶在共振和最大激振条件下的波浪响应,发现当满足共振和最大激振条件时,船舶响应强烈。
上述的研究主要集中在飞行条件下转子-轴承系统的非线性动力学特性和波浪载荷作用下的船体运动响应。对于牵连运动下的船用转子-轴承系统动力学特性研究,文献[10]分析了舰船在水平和垂直摆动情况下船用轴承的油膜力特性;文献[11]考虑了舰船在横摇、纵摇运动下,发动机转子-轴承系统的非线性动力学响应;文献[12]建立了气囊-浮筏耦合船用转子-轴承系统的动力学模型,并且详细分析了其动力学特性。本文讨论在垂荡运动时船用转子-轴承系统的动力学响应,重点分析了在非线性油膜力作用下系统的动力学行为,从而为船用转子-轴承系统的振动控制提供理論依据。
3 结 论
考虑在垂荡运动情况下,基于短轴承理论建立了非惯性参考系下的转子-轴承系统动力学模型,分析了垂荡幅值对转子-轴承系统非线性动力学特性的影响。结果表明:垂荡运动对系统的非线性动力学特性的影响较大,其中垂荡运动在转子转速较低时对其动力学特性影响起主导作用,此时系统表现为同步运动为主的周期1特性;随着转速的增加,系统会出现准周期分岔,垂荡还会引起非线性油膜力的变化,出现了明显的油膜涡动现象。随着转速的进一步升高,转子系统出现双Hopf分岔现象,而后再次进入准周期分岔直至混沌,并且垂荡运动会使转子系统提前进入混沌运动状态。另外,垂荡幅值的变化也会影响系统的动力学特性,此时产生一条新的混沌路径:周期2→准周期→混沌。上述结果为舰船垂荡作用下转子-轴承系统的动力学设计、状态监测及振动控制提供理论依据。
参考文献:
[1] 王术新, 李 明. 船用柴油机的噪声控制[J]. 造船技术, 2004,(02):36-37.
Wang Shuxin, Li Ming. Noise control of marine diesel engine[J]. Journal of Marine Technology, 2004,(02):36-37.
[2] 徐 敏, 廖明夫, 刘佶洲. 机动飞行条件下双盘悬臂转子的振动特性[J]. 航空动力学报, 2002,17(1):105-109.
Xu Min, Liao Ming-fu, Liu Qi-zhou. The vibration performance of the double-disk cantilever rotor in flight mission[J]. Journal of Aerospace Power, 2002,17(1):105-109.
[3] 林富生,孟 光.飞行器内SFD-转子系统的动力学特性研究[J]. 振动工程学报, 2004,17(4):403-407.
Lin Fusheng, Meng Guang. Study on the dynamic characteristics of SFD-rotor system in aircrafts[J]. Journal of Vibration Engineering, 2004,17(4):403-407. [4] 祝长生, 陈拥军. 机动飞行时航空发动机转子系统的振动特性[J]. 航空学报, 2006, 27(5): 835-841.
Zhu Chang-sheng , Chen Yong-jun. Vibration characteristics of aero engine’ s rotor system during maneuvering flight[J]. Acta Aeronautica Et Astronautica Sinica, 2006,27(5):835-841.
[5] 侯 磊. 机动飞行环境下转子系统的非线性动力学行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
Hou Lei. Research on nonlinear dynamics of rotor system in manuevering flight[D]. Harbin: Harbin Institute of Technology, 2015.
[6] 刘建华, 洪 竹. 船舶纵横摇耦合运动数学模型研究[J]. 江苏科技大学学报(自然科学版), 2016, 30(5):411-416.
Liu Jian-hua , Hong Zhu. Mathematical model of ship pitching and rolling coupled motions[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2016,30(5):411-416.
[7] Srigrarom S, Chai W S. Effect of pitching and heaving motions of SD8020 hydrofoil on thrust and efficiency for swimming propulsion[C]. APS Division of Fluid Dynamics Meeting, APS Division of Fluid Dynamics Meeting Abstracts, 2013.
[8] Floryan D, Buren T V, Rowley C W, et al. Scaling the propulsive performance of heaving and pitching foils[J]. Journal of Fluid Mechanics, 2017,822(1):386-397.
[9] Simonsen C D, Otzen J F, Joncquez S, et al. EFD and CFD for KCS heaving and pitching in regular head waves[J]. Journal of Marine Science & Technology, 2013, 18(4):435-459.
[10] Zhang Guanghui, Liu Shupeng, Cao Zhixuan, et al. Analytical model of self-acting journal bearing subjected to base excitation for marine engine system[J].Journal of Engineering for the Maritime Environment, 2013,227(2):194-207.
[11] Zhang Guanghui, Liu Shupeng, Ma Ruixian, et al. Nonlinear dynamic characteristics of journal bearing-rotor system considering the pitching and rolling motion for marine turbo machinery[J]. Journal of Engineering for the Maritime Environment, 2015,229(1):95-107.
[12] 李 明, 趙 文, 何 琳. 气囊-浮筏耦合船用转子-轴承系统的非线性动力学研究[J]. 振动工程学报, 2015,28(4):618-624.
Li Ming, Zhao Wen, He Lin. Nonlinear dynamic behavior of marine rotor-bearing system coupled by air bag-floating[J]. Journal of Vibration Engineering, 2015,28(4):618-624.
[13] 钟一谔,何衍宗,王 正,等.转子动力学[M]. 北京:清华大学出版社, 1987:63-68.
Zhong Yi-e, He Yan-zong, Wang Zheng,et al.. Rotor Dynamics[M]. Beijing: Tsinghua University Press, 1987:63-68.
[14] 刘树鹏. 舰船纵横倾作用下转子轴承系统动力学特性研究[D].哈尔滨:哈尔滨工业大学,2011.
Abstract: With the ship heaving motion considered, the dynamic behaviors of the marine rotor-bearing system is studied in this paper. First, the dynamic model of the rotor-bearing system under the heaving motion is established based on the short bearing theory in the non-inertial reference system, in which the geometric nonlinearity is found to take place in the marine rotor-bearing system when with the action of heaving motion is taken into account. In addition, the dynamic characteristics, such as the bifurcation diagram, the maximum Lyapunov exponents, the steady state response, the rotor orbit and its Poincaré map are analyzed through numerical method, and the results are compared with those of the rotor-bearing system without heaving motion. Finally, the influence of the amplitude of the heaving excitation on the nonlinear dynamic characteristics of the rotor-bearing system is studied. The results show that the system exhibits a single cycle motion at low rotating speed and the heaving motion effect for this situation is obvious. With the increase of the speed, the phenomena of quasi-periodic, period two and double Hopf bifurcations occur in the system, and its dynamic characteristics present a single cyclic motion, quasi-periodic, period two and chaos etc..
Key words: nonlinear dynamics; marine rotor-bearing system; heaving; short bearing model
作者简介: 韩永超(1993-),男, 硕士研究生。电话: 18291875802; E-mail: 526702348@qq.com
李 明(1963-),男, 教授,博士生导师。电话: 13572980962; E-mail: limingnuaa@hotmail.com
关键词: 非线性动力学; 船用转子-轴承系统; 垂荡; 短轴承模型
中图分类号: O322; O347.6 文献标志码: A 文章编号: 1004-4523(2019)03-0501-08
DOI:10.16385/j.cnki.issn.1004-4523.2019.03.015
引 言
舰船在航行时会产生横荡、纵荡、垂荡、横摇、纵摇和艏摇等运动。这些运动形式都是典型的牵连运动,会对船用转子-轴承系统产生严重的影响,如舰船航行的安全性、可靠性、舒适性以及隐蔽性和作战能力[1]。牵连运动对转子-轴承系统动力学特性的影响,主要集中在机载情况下转子系统的动力学问题。例如,文献[2]建立了飞机飞行条件下双盘悬臂转子系统的动力学模型,并对转子系统的振动特性进行了讨论;文献[3]研究了飞行器在机动飞行状态下,机载转子系统动力学响应的变化规律,结果表明飞行器垂直加速度分量过大或水平加速度过小的两个极限状态都会使原来稳定的SFD-转子系统变得不稳定。文献[4]对任意机动飞行条件下的飞机建立了柔性转子系统的线性动力学模型,并针对几种典型条件分析了系统的动力学特性。文献[5]建立了有不同类型支承条件及含有不同故障的转子系统模型,并对在Herbs机动飞行、水平盘旋、垂直面内正弦机动以及爬升-俯冲等机动飞行环境下转子系统的非线性动力学行为及振动机理进行了研究。
对于船体在航行中遇到风浪产生的牵连运动研究也取得一定的进展。文献[6]用Hamilton原理以欧拉角为参量描述船舶的摇摆运动,建立了船舶参数下纵横摇耦合运动的数学模型,研究了船舶的动力学响应。文献[7]在低雷诺数的水隧道中,通过测量力、力矩和对液体流量可视化研究,优化了经历横摇和垂荡运动的SD8020箔片水翼的推力产生性能和效率。文献[8]研究了经历横摇和垂荡运动的刚性箔推进性能的缩放规律,并通过水隧道实验验证了此规律。结果显示:推力、功率和效率的缩放数据等都与系统所减少的频率间存在依赖关系。文献[9]研究了船舶在共振和最大激振条件下的波浪响应,发现当满足共振和最大激振条件时,船舶响应强烈。
上述的研究主要集中在飞行条件下转子-轴承系统的非线性动力学特性和波浪载荷作用下的船体运动响应。对于牵连运动下的船用转子-轴承系统动力学特性研究,文献[10]分析了舰船在水平和垂直摆动情况下船用轴承的油膜力特性;文献[11]考虑了舰船在横摇、纵摇运动下,发动机转子-轴承系统的非线性动力学响应;文献[12]建立了气囊-浮筏耦合船用转子-轴承系统的动力学模型,并且详细分析了其动力学特性。本文讨论在垂荡运动时船用转子-轴承系统的动力学响应,重点分析了在非线性油膜力作用下系统的动力学行为,从而为船用转子-轴承系统的振动控制提供理論依据。
3 结 论
考虑在垂荡运动情况下,基于短轴承理论建立了非惯性参考系下的转子-轴承系统动力学模型,分析了垂荡幅值对转子-轴承系统非线性动力学特性的影响。结果表明:垂荡运动对系统的非线性动力学特性的影响较大,其中垂荡运动在转子转速较低时对其动力学特性影响起主导作用,此时系统表现为同步运动为主的周期1特性;随着转速的增加,系统会出现准周期分岔,垂荡还会引起非线性油膜力的变化,出现了明显的油膜涡动现象。随着转速的进一步升高,转子系统出现双Hopf分岔现象,而后再次进入准周期分岔直至混沌,并且垂荡运动会使转子系统提前进入混沌运动状态。另外,垂荡幅值的变化也会影响系统的动力学特性,此时产生一条新的混沌路径:周期2→准周期→混沌。上述结果为舰船垂荡作用下转子-轴承系统的动力学设计、状态监测及振动控制提供理论依据。
参考文献:
[1] 王术新, 李 明. 船用柴油机的噪声控制[J]. 造船技术, 2004,(02):36-37.
Wang Shuxin, Li Ming. Noise control of marine diesel engine[J]. Journal of Marine Technology, 2004,(02):36-37.
[2] 徐 敏, 廖明夫, 刘佶洲. 机动飞行条件下双盘悬臂转子的振动特性[J]. 航空动力学报, 2002,17(1):105-109.
Xu Min, Liao Ming-fu, Liu Qi-zhou. The vibration performance of the double-disk cantilever rotor in flight mission[J]. Journal of Aerospace Power, 2002,17(1):105-109.
[3] 林富生,孟 光.飞行器内SFD-转子系统的动力学特性研究[J]. 振动工程学报, 2004,17(4):403-407.
Lin Fusheng, Meng Guang. Study on the dynamic characteristics of SFD-rotor system in aircrafts[J]. Journal of Vibration Engineering, 2004,17(4):403-407. [4] 祝长生, 陈拥军. 机动飞行时航空发动机转子系统的振动特性[J]. 航空学报, 2006, 27(5): 835-841.
Zhu Chang-sheng , Chen Yong-jun. Vibration characteristics of aero engine’ s rotor system during maneuvering flight[J]. Acta Aeronautica Et Astronautica Sinica, 2006,27(5):835-841.
[5] 侯 磊. 机动飞行环境下转子系统的非线性动力学行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
Hou Lei. Research on nonlinear dynamics of rotor system in manuevering flight[D]. Harbin: Harbin Institute of Technology, 2015.
[6] 刘建华, 洪 竹. 船舶纵横摇耦合运动数学模型研究[J]. 江苏科技大学学报(自然科学版), 2016, 30(5):411-416.
Liu Jian-hua , Hong Zhu. Mathematical model of ship pitching and rolling coupled motions[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2016,30(5):411-416.
[7] Srigrarom S, Chai W S. Effect of pitching and heaving motions of SD8020 hydrofoil on thrust and efficiency for swimming propulsion[C]. APS Division of Fluid Dynamics Meeting, APS Division of Fluid Dynamics Meeting Abstracts, 2013.
[8] Floryan D, Buren T V, Rowley C W, et al. Scaling the propulsive performance of heaving and pitching foils[J]. Journal of Fluid Mechanics, 2017,822(1):386-397.
[9] Simonsen C D, Otzen J F, Joncquez S, et al. EFD and CFD for KCS heaving and pitching in regular head waves[J]. Journal of Marine Science & Technology, 2013, 18(4):435-459.
[10] Zhang Guanghui, Liu Shupeng, Cao Zhixuan, et al. Analytical model of self-acting journal bearing subjected to base excitation for marine engine system[J].Journal of Engineering for the Maritime Environment, 2013,227(2):194-207.
[11] Zhang Guanghui, Liu Shupeng, Ma Ruixian, et al. Nonlinear dynamic characteristics of journal bearing-rotor system considering the pitching and rolling motion for marine turbo machinery[J]. Journal of Engineering for the Maritime Environment, 2015,229(1):95-107.
[12] 李 明, 趙 文, 何 琳. 气囊-浮筏耦合船用转子-轴承系统的非线性动力学研究[J]. 振动工程学报, 2015,28(4):618-624.
Li Ming, Zhao Wen, He Lin. Nonlinear dynamic behavior of marine rotor-bearing system coupled by air bag-floating[J]. Journal of Vibration Engineering, 2015,28(4):618-624.
[13] 钟一谔,何衍宗,王 正,等.转子动力学[M]. 北京:清华大学出版社, 1987:63-68.
Zhong Yi-e, He Yan-zong, Wang Zheng,et al.. Rotor Dynamics[M]. Beijing: Tsinghua University Press, 1987:63-68.
[14] 刘树鹏. 舰船纵横倾作用下转子轴承系统动力学特性研究[D].哈尔滨:哈尔滨工业大学,2011.
Abstract: With the ship heaving motion considered, the dynamic behaviors of the marine rotor-bearing system is studied in this paper. First, the dynamic model of the rotor-bearing system under the heaving motion is established based on the short bearing theory in the non-inertial reference system, in which the geometric nonlinearity is found to take place in the marine rotor-bearing system when with the action of heaving motion is taken into account. In addition, the dynamic characteristics, such as the bifurcation diagram, the maximum Lyapunov exponents, the steady state response, the rotor orbit and its Poincaré map are analyzed through numerical method, and the results are compared with those of the rotor-bearing system without heaving motion. Finally, the influence of the amplitude of the heaving excitation on the nonlinear dynamic characteristics of the rotor-bearing system is studied. The results show that the system exhibits a single cycle motion at low rotating speed and the heaving motion effect for this situation is obvious. With the increase of the speed, the phenomena of quasi-periodic, period two and double Hopf bifurcations occur in the system, and its dynamic characteristics present a single cyclic motion, quasi-periodic, period two and chaos etc..
Key words: nonlinear dynamics; marine rotor-bearing system; heaving; short bearing model
作者简介: 韩永超(1993-),男, 硕士研究生。电话: 18291875802; E-mail: 526702348@qq.com
李 明(1963-),男, 教授,博士生导师。电话: 13572980962; E-mail: limingnuaa@hotmail.com