论文部分内容阅读
随着显著性研究的发展,已涌现多个显著性数据集,然而目前面向社交媒体图像的显著性数据集数量非常少.为此构建此类显著性数据集,详细论述了数据集的图像来源、图像的筛选原则、图像的标注及数据集的统计分析.为了验证新建数据集的性能,与目前流行的7个显著性数据集进行性能评测,新建数据集具有显著区域尺寸丰富、与图像边界连接度高、显著区域与图像的颜色差异小的优点.实验结果表明:新建数据集中显著区域与图像边界连接的比例为17%,仅低于ECSSD数据集;其中显著区域和整幅图像的颜色差均值最小,且包含10个尺寸等级的显著