论文部分内容阅读
In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algo- rithm has to be adopted. In view of the heavy calculation burden of the traditional optimal assignment algorithm, this paper proposes a new global optimal assign- ment algorithm and a 2-stage association algorithm based on a statistic test. Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate as- sociation cost; hence, much of the procedure time is saved. In the 2-stage asso- ciation algorithm, a large number of false location points are eliminated from can- didate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyses and simulation results can verify the effectiveness of the new algorithms.
In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algo- rithm has been adopted. In view of the heavy calculation burden of the traditional optimal assignment Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate as - the sociation cost; hence, much of the procedure time is saved. In the 2-stage asso- ciation algorithm, a large number of false location points are eliminated from can- didate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyzes and simulation results can verify the effectiveness of the new algorithms .