论文部分内容阅读
为了提高BP神经网络的输出精度,提出一种改进的教与学优化算法进行神经网络中的权值和阈值的优化调整.算法对基本的教与学优化算法的"教"阶段和"学"阶段分别进行改进,并提出一种"自学"机制来增强算法的学习能力.通过函数拟合实验和拖拉机齿轮箱故障诊断实验进行算法性能测试,结果表明,与遗传算法和基本的教与学优化算法相比,该算法具有收敛速度快、求解精度高等优势.