【摘 要】
:
环境变化和人类活动的双重驱动正在快速地改变地球生态系统状态,呈现出了众多级联的资源环境问题,生态系统的状态变化和时空演变驱动因素以及相应的资源环境效应是大尺度陆地生态系统科学研究的永恒主题。观测和评估生态系统状态变化,发现和理解生态系统响应机制,认知和描述生态系统演变规律,预测和预警生态系统演变趋势,都依赖于大陆及全球尺度的分布式协同观测研究网络。本研究以服务大陆尺度生态系统科学研究、支撑区域生态环境治理为目标,围绕生态系统状态变化及资源环境效应科学问题,综合分析了现有生态环境观测研究网络现状,明确提出了
【机 构】
:
中国生态系统研究网络综合研究中心/中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,中国科学院大学资源与环境学院
【基金项目】
:
国家重点研发计划项目(2017YFC0503801),国家自然科学基金项目(31988102,41671045)资助。
论文部分内容阅读
环境变化和人类活动的双重驱动正在快速地改变地球生态系统状态,呈现出了众多级联的资源环境问题,生态系统的状态变化和时空演变驱动因素以及相应的资源环境效应是大尺度陆地生态系统科学研究的永恒主题。观测和评估生态系统状态变化,发现和理解生态系统响应机制,认知和描述生态系统演变规律,预测和预警生态系统演变趋势,都依赖于大陆及全球尺度的分布式协同观测研究网络。本研究以服务大陆尺度生态系统科学研究、支撑区域生态环境治理为目标,围绕生态系统状态变化及资源环境效应科学问题,综合分析了现有生态环境观测研究网络现状,明确提出了
其他文献
土壤-植物-大气连续体(SPAC)中水循环是水文学和生态学研究的重要内容,氢氧稳定同位素在不同水体中组成特征的差异可以指示水分循环过程。本研究通过分析成都平原区亚热带常绿阔叶林中降水、土壤水、植物水的同位素组成,探讨SPAC系统中水分的氢氧稳定同位素演化特征,揭示区域水循环不同界面过程。结果表明:研究区雨季大气降水线方程为:δD=7.13δ~(18)O+2.35(R~2=0.99),土壤蒸发线方程
Nb3Sn复合超导体中的晶粒具有复杂的形貌,本文基于密排纤维增强复合材料的相关理论与多晶体有限元分析方法,建立Nb3Sn复合超导体中晶粒及晶界变形的尺度耦合计算模型,该模型
通过无记忆非线性平移得到非高斯轨道高低不平顺,并以此为激励作用于列车-轨道-桥梁耦合系统结构,对比分析了高斯和非高斯轨道不平顺对列车、轨道和桥梁动力学性能的影响。结果表明:模拟的非高斯轨道不平顺相关函数和目标相关函数相互吻合;考虑四种高斯轨道不平顺激励下,车体的垂向振动加速度响应出现了紊乱现象,中国干线轨道高斯不平顺对车体的垂向振动加速度响应影响较其他3种不平顺要小,但对钢轨的垂向振动加速度响应影响比其他3种不平顺要大;美国六级轨道、德国高低干扰轨道非高斯不平顺激励下的耦合结构振动加速度响应均在不同程度上
降水氢氧同位素的变化程度对反演降水水汽来源和认识蒸发作用的强弱有重要作用;结合高时间分辨率的卫星降水产品能够提高反演水汽来源的准确性,更清晰地说明水汽团的运移路径。本研究以位于华北北纬38°带的中国科学院太行山站(山区)、栾城站(山前平原)和南皮站(滨海低平原)2015—2018年降水氢氧同位素为对象,分析该区域降水水汽来源和极端降水对氢氧同位素的影响。结果表明:华北北纬38°带降水氢氧同位素在年内呈雨季富集、旱季贫化的特征,雨季降水氢氧同位素表现出随降水量增加而贫化的趋势;华北山前平原大气降水氢氧同位素
探索稳定同位素对三疣梭子蟹产地溯源的可行性,可为保护地理标志产品、追溯原产地来源提供理论依据.本研究以黄海、渤海和东海3个主产区海域的三疣梭子蟹为对象,分析了其碳、
为研究核级石墨的断裂性能,对单边切口的石墨梁进行三点弯曲试验,并采用扩展有限元(XFEM)对其断裂行为进行数值模拟.通过将数值模拟结果与试验得到的荷载-位移曲线进行对比,
为准确了解岩屑在井眼中的实时运移、积累过程及其变化规律,基于质量守恒和动量守恒方程,考虑岩屑运移流型和流型转换条件,建立了适应流型变化的瞬态通用固液两相流模型;并将
为了全面认识森林生态系统蒸散各组分及其对蒸散的贡献率在日尺度上的变化规律,本研究利用同位素稳态和非稳态假设理论结合水同位素分析仪系统,对生长季侧柏林生态系统蒸散各
聚四氟乙烯(PTFE)塑料管研磨法是测定植物碳同位素比率(δ13C)值常用的前处理方法.该方法处理样品高效快捷,但对植物δ13C可能存在污染.本研究利用人工气候室开展双因素交互
针对民用飞机结构轻量化的高需求,本文介绍了民用飞机典型双耳接头3D打印设计制造一体化的流程及方法。首先通过工程算法对双耳接头进行静强度分析,并运用拓扑软件进行优化设计,经过有限元分析软件进行非线性仿真分析之后调整优化设计模型;然后进行静强度加载,验证接头的承载能力。初始接头质量为214.15g,承载能力(载荷/质量)为74.74N/g。优化后,接头质量为30.25g,减重85.87%;承载能力为231.37N/g,提升了209.57%。