论文部分内容阅读
综合交通设施场景的自动分类与识别对交通网络布局、城市规划、智慧城市建设等方面有重要的研究与实践价值。鉴于目前研究主要集中在单一的交通设施目标识别与检测方面,采用速度快、分类精度高、适宜于海量数据运算的CaffeNet深度学习模型,基于迁移学习思想,通过5层卷积、3层池化、1层全连接等过程提取机场、桥梁、停车场、港口、火车站等交通设施场景图像的特征向量,并输入到SVM分类器中进行分类,平均分类精度达到93.5%。实验中将CaffeNet模型与基于VGG-16、GoogleNet这2种深度学习模型的方法