论文部分内容阅读
作者在前期研究工作中提出了一种基于网格的带有参考参数的聚类算法(GRPC),该算法从用户的角度去看待聚类,最大程度地避免用户设置聚类参数的盲目性.本文对GRPC算法在高维性和可伸缩性两方面进行了扩展,将高维数据空间的聚类工作分解到二维数据空间来进行,并采用随机抽样技术来处理大规模的数据集.实验仿真表明,该算法能在三维及其以上的数据空间有效地聚类较大规模数据集.