论文部分内容阅读
线性混合模型是非寿险费率厘定的主要方法之一。通常的线性混合模型假设随机误差项服从正态分布,而保险损失数据往往具有右偏特征,这使得该模型在非寿险费率厘定中的应用受到一定影响。在通常的线性混合模型基础上,假设随机误差项服从偏态分布,即可建立偏态线性混合模型,从而改善费率厘定结果的合理性。基于一组实际的保险损失数据,应用贝叶斯MCMC方法建立几个不同的偏态线性混合模型,并与正态分布假设下的线性混合模型进行对比,实证检验偏态线性混合模型在非寿险费率厘定中的优越性。