论文部分内容阅读
随着目标检测技术的不断发展,用于道路场景的车辆检测系统在自动驾驶领域得到了广泛应用。与传统的目标检测器相比,车辆检测的目标比较单一,但同时需要解决两大问题,一是在复杂的道路场景中,提供给检测器的车辆特征通常是不完整的,会出现遮挡和形变等问题;二是在自动驾驶过程中,需要对不同车辆的距离做出估计才能保证智能车及时地做出规避动作,即对图像的目标区域进行深度估计。针对这两个问题,提出了基于对抗样本生成与深度图重建的车辆检测方法。为预训练目标检测网络Faster-RCNN设计一个对抗网络,用于在训练过程中产生